Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127723726> ?p ?o ?g. }
- W3127723726 endingPage "E224" @default.
- W3127723726 startingPage "E209" @default.
- W3127723726 abstract "Machine learning, and specifically deep-learning (DL) techniques applied to geophysical inverse problems, is an attractive subject, which has promising potential and, at the same time, presents some challenges in practical implementation. Some obstacles relate to scarce knowledge of the searched geologic structures, a problem that can limit the interpretability and generalizability of the trained DL networks when applied to independent scenarios in real applications. Commonly used (physics-driven) least-squares optimization methods are very efficient local optimization techniques but require good starting models close to the correct solution to avoid local minima. We have developed a hybrid workflow that combines both approaches in a coupled physics-driven/DL inversion scheme. We exploit the benefits and characteristics of both inversion techniques to converge to solutions that typically outperform individual inversion results and bring the solution closer to the global minimum of a nonconvex inverse problem. The completely data-driven and self-feeding procedure relies on a coupling mechanism between the two inversion schemes taking the form of penalty functions applied to the model term. Predictions from the DL network are used to constrain the least-squares inversion, whereas the feedback loop from inversion to the DL scheme consists of the network retraining with partial results obtained from inversion. The self-feeding process tends to converge to a common agreeable solution, which is the result of two independent schemes with different mathematical formalisms and different objective functions on the data and model misfit. We determine that the hybrid procedure is converging to robust and high-resolution resistivity models when applied to the inversion of the synthetic and field transient electromagnetic data. Finally, we speculate that the procedure may be adopted to recast the way we solve inverse problems in several different disciplines." @default.
- W3127723726 created "2021-02-15" @default.
- W3127723726 creator A5009839263 @default.
- W3127723726 creator A5012078441 @default.
- W3127723726 creator A5032863029 @default.
- W3127723726 creator A5054386475 @default.
- W3127723726 creator A5090564286 @default.
- W3127723726 date "2021-04-08" @default.
- W3127723726 modified "2023-10-06" @default.
- W3127723726 title "Physics-driven deep-learning inversion with application to transient electromagnetics" @default.
- W3127723726 cites W1507599800 @default.
- W3127723726 cites W1901129140 @default.
- W3127723726 cites W1967409080 @default.
- W3127723726 cites W1977222926 @default.
- W3127723726 cites W1996130133 @default.
- W3127723726 cites W2000359198 @default.
- W3127723726 cites W2007176163 @default.
- W3127723726 cites W2087070363 @default.
- W3127723726 cites W2090351291 @default.
- W3127723726 cites W2094088790 @default.
- W3127723726 cites W2100245965 @default.
- W3127723726 cites W2111406701 @default.
- W3127723726 cites W2144796873 @default.
- W3127723726 cites W2157285372 @default.
- W3127723726 cites W2158317174 @default.
- W3127723726 cites W2169817802 @default.
- W3127723726 cites W2256578114 @default.
- W3127723726 cites W2547410211 @default.
- W3127723726 cites W2776585113 @default.
- W3127723726 cites W2800858937 @default.
- W3127723726 cites W2887468057 @default.
- W3127723726 cites W2888590918 @default.
- W3127723726 cites W2891713389 @default.
- W3127723726 cites W2892335332 @default.
- W3127723726 cites W2899283552 @default.
- W3127723726 cites W2902216690 @default.
- W3127723726 cites W2906386705 @default.
- W3127723726 cites W2955712958 @default.
- W3127723726 cites W2961960085 @default.
- W3127723726 cites W2966893043 @default.
- W3127723726 cites W2967187791 @default.
- W3127723726 cites W2981029683 @default.
- W3127723726 cites W3016406005 @default.
- W3127723726 cites W3047245470 @default.
- W3127723726 cites W3090439302 @default.
- W3127723726 cites W3101765447 @default.
- W3127723726 cites W3113643857 @default.
- W3127723726 cites W46355600 @default.
- W3127723726 doi "https://doi.org/10.1190/geo2020-0760.1" @default.
- W3127723726 hasPublicationYear "2021" @default.
- W3127723726 type Work @default.
- W3127723726 sameAs 3127723726 @default.
- W3127723726 citedByCount "31" @default.
- W3127723726 countsByYear W31277237262021 @default.
- W3127723726 countsByYear W31277237262022 @default.
- W3127723726 countsByYear W31277237262023 @default.
- W3127723726 crossrefType "journal-article" @default.
- W3127723726 hasAuthorship W3127723726A5009839263 @default.
- W3127723726 hasAuthorship W3127723726A5012078441 @default.
- W3127723726 hasAuthorship W3127723726A5032863029 @default.
- W3127723726 hasAuthorship W3127723726A5054386475 @default.
- W3127723726 hasAuthorship W3127723726A5090564286 @default.
- W3127723726 hasConcept C109007969 @default.
- W3127723726 hasConcept C11413529 @default.
- W3127723726 hasConcept C126255220 @default.
- W3127723726 hasConcept C127313418 @default.
- W3127723726 hasConcept C134306372 @default.
- W3127723726 hasConcept C135252773 @default.
- W3127723726 hasConcept C151730666 @default.
- W3127723726 hasConcept C154945302 @default.
- W3127723726 hasConcept C186633575 @default.
- W3127723726 hasConcept C1893757 @default.
- W3127723726 hasConcept C2781067378 @default.
- W3127723726 hasConcept C33923547 @default.
- W3127723726 hasConcept C41008148 @default.
- W3127723726 hasConcept C50644808 @default.
- W3127723726 hasConceptScore W3127723726C109007969 @default.
- W3127723726 hasConceptScore W3127723726C11413529 @default.
- W3127723726 hasConceptScore W3127723726C126255220 @default.
- W3127723726 hasConceptScore W3127723726C127313418 @default.
- W3127723726 hasConceptScore W3127723726C134306372 @default.
- W3127723726 hasConceptScore W3127723726C135252773 @default.
- W3127723726 hasConceptScore W3127723726C151730666 @default.
- W3127723726 hasConceptScore W3127723726C154945302 @default.
- W3127723726 hasConceptScore W3127723726C186633575 @default.
- W3127723726 hasConceptScore W3127723726C1893757 @default.
- W3127723726 hasConceptScore W3127723726C2781067378 @default.
- W3127723726 hasConceptScore W3127723726C33923547 @default.
- W3127723726 hasConceptScore W3127723726C41008148 @default.
- W3127723726 hasConceptScore W3127723726C50644808 @default.
- W3127723726 hasIssue "3" @default.
- W3127723726 hasLocation W31277237261 @default.
- W3127723726 hasOpenAccess W3127723726 @default.
- W3127723726 hasPrimaryLocation W31277237261 @default.
- W3127723726 hasRelatedWork W1495761755 @default.
- W3127723726 hasRelatedWork W2046427010 @default.
- W3127723726 hasRelatedWork W2082651732 @default.
- W3127723726 hasRelatedWork W2150240527 @default.