Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127736239> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3127736239 abstract "In this paper, we first introduce a periodic-review multi-product inventory system where each customer's demand is affected by the product availabilities and the customer's preference. As customer preferences are not directly observable and hard to estimate, when the full distributional information of the demand is not available, the decision-maker has to learn the information on-the-fly, through the partial and censored feedback of customers. For this learning problem, if one ignores the inventory dynamic and simply treat this as a Multi-Armed Bandit problem and directly applies some existing algorithms, e.g., the Upper Confidence Bound (UCB) algorithm, the convergence can be extremely slow due to the high-dimensionality of the policy space. We propose a UCB-based learning framework that utilizes the demand information based on two improvement ideas. We illustrate how these two ideas can be incorporated by considering two specific systems: 1) multi-product inventory system with stock-out substitutions, 2) multi-product inventory assortment problem for urban warehouses. We develop improved UCB algorithms for both systems, using the two improvements. For both systems, the algorithm can achieve a tight worst-case convergence rate (up to a logarithmic term) on the planning horizon T. Extensive numerical experiments are conducted to demonstrate the efficiency of the improved UCB algorithms for the two systems. In the experiments, when there are more than 1000 candidate policies to choose from, the algorithms can achieve around 15% average expected regret within 50 periods and continues to steadily improve as time increases." @default.
- W3127736239 created "2021-02-15" @default.
- W3127736239 creator A5009997070 @default.
- W3127736239 creator A5026233474 @default.
- W3127736239 date "2021-01-01" @default.
- W3127736239 modified "2023-09-26" @default.
- W3127736239 title "An Efficient Learning Framework for Multi-Product Inventory Systems with Customer Choices" @default.
- W3127736239 cites W1983916623 @default.
- W3127736239 cites W1987732182 @default.
- W3127736239 cites W2009551863 @default.
- W3127736239 cites W2021380229 @default.
- W3127736239 cites W2032091434 @default.
- W3127736239 cites W2046475359 @default.
- W3127736239 cites W2070218576 @default.
- W3127736239 cites W2081321495 @default.
- W3127736239 cites W2090343757 @default.
- W3127736239 cites W2096355537 @default.
- W3127736239 cites W2102953461 @default.
- W3127736239 cites W2144867163 @default.
- W3127736239 cites W2149721706 @default.
- W3127736239 cites W2160172818 @default.
- W3127736239 cites W2161803816 @default.
- W3127736239 cites W2164010570 @default.
- W3127736239 cites W2168405694 @default.
- W3127736239 cites W2169725625 @default.
- W3127736239 cites W2314247578 @default.
- W3127736239 cites W2616265545 @default.
- W3127736239 cites W2884330776 @default.
- W3127736239 cites W290320431 @default.
- W3127736239 cites W2956003076 @default.
- W3127736239 cites W3026412630 @default.
- W3127736239 cites W3121580288 @default.
- W3127736239 cites W3122908781 @default.
- W3127736239 cites W3123435706 @default.
- W3127736239 cites W3128715451 @default.
- W3127736239 cites W3133359004 @default.
- W3127736239 cites W4206932883 @default.
- W3127736239 cites W762829923 @default.
- W3127736239 doi "https://doi.org/10.2139/ssrn.3775303" @default.
- W3127736239 hasPublicationYear "2021" @default.
- W3127736239 type Work @default.
- W3127736239 sameAs 3127736239 @default.
- W3127736239 citedByCount "1" @default.
- W3127736239 countsByYear W31277362392012 @default.
- W3127736239 crossrefType "journal-article" @default.
- W3127736239 hasAuthorship W3127736239A5009997070 @default.
- W3127736239 hasAuthorship W3127736239A5026233474 @default.
- W3127736239 hasConcept C144133560 @default.
- W3127736239 hasConcept C162324750 @default.
- W3127736239 hasConcept C162853370 @default.
- W3127736239 hasConcept C195094911 @default.
- W3127736239 hasConcept C21547014 @default.
- W3127736239 hasConcept C2524010 @default.
- W3127736239 hasConcept C33923547 @default.
- W3127736239 hasConcept C41008148 @default.
- W3127736239 hasConcept C56739046 @default.
- W3127736239 hasConcept C90673727 @default.
- W3127736239 hasConceptScore W3127736239C144133560 @default.
- W3127736239 hasConceptScore W3127736239C162324750 @default.
- W3127736239 hasConceptScore W3127736239C162853370 @default.
- W3127736239 hasConceptScore W3127736239C195094911 @default.
- W3127736239 hasConceptScore W3127736239C21547014 @default.
- W3127736239 hasConceptScore W3127736239C2524010 @default.
- W3127736239 hasConceptScore W3127736239C33923547 @default.
- W3127736239 hasConceptScore W3127736239C41008148 @default.
- W3127736239 hasConceptScore W3127736239C56739046 @default.
- W3127736239 hasConceptScore W3127736239C90673727 @default.
- W3127736239 hasLocation W31277362391 @default.
- W3127736239 hasOpenAccess W3127736239 @default.
- W3127736239 hasPrimaryLocation W31277362391 @default.
- W3127736239 hasRelatedWork W2016288967 @default.
- W3127736239 hasRelatedWork W2024203263 @default.
- W3127736239 hasRelatedWork W2174438959 @default.
- W3127736239 hasRelatedWork W2265503299 @default.
- W3127736239 hasRelatedWork W2325286992 @default.
- W3127736239 hasRelatedWork W2350086902 @default.
- W3127736239 hasRelatedWork W2543545203 @default.
- W3127736239 hasRelatedWork W281246900 @default.
- W3127736239 hasRelatedWork W2899592220 @default.
- W3127736239 hasRelatedWork W4206062546 @default.
- W3127736239 isParatext "false" @default.
- W3127736239 isRetracted "false" @default.
- W3127736239 magId "3127736239" @default.
- W3127736239 workType "article" @default.