Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127820163> ?p ?o ?g. }
- W3127820163 abstract "Latent class analysis is a well-established method in human and veterinary medicine for evaluating the accuracy of diagnostic tests without a gold standard. An important assumption of this procedure is the conditional independence of the tests. If tests with the same biological principle are used, this assumption is no longer met. Therefore, the model has to be adapted so that the dependencies between the tests can be considered. Our approach extends the traditional latent class model with a term for the conditional dependency of the tests. This extension increases the number of parameters to be estimated and leads to negative degrees of freedom of the model, meaning that not enough information is contained in the existing data to obtain a unique estimate. As a result, there is no clear solution. Hence, an iterative algorithm was developed to keep the number of parameters to be estimated small. Given adequate starting values, our approach first estimates the conditional dependencies and then regards the resulting values as fixed to recalculate the test accuracies and the prevalence with the same method used for independent tests. Subsequently, the new values of the test accuracy and prevalence are used to recalculate the terms for the conditional dependencies. These two steps are repeated until the model converges. We simulated five application scenarios based on diagnostic tests used in veterinary medicine. The results suggest that our method and the Bayesian approach produce similar precise results. However, while the presented approach is able to calculate more accurate results than the Bayesian approach if the test accuracies are initially misjudged, the estimates of the Bayesian method are more precise when incorrect dependencies are assumed. This finding shows that our approach is a useful addition to the existing Bayesian methods, while it has the advantage of allowing simpler and more objective estimations." @default.
- W3127820163 created "2021-02-15" @default.
- W3127820163 creator A5005164328 @default.
- W3127820163 creator A5018045682 @default.
- W3127820163 creator A5038390247 @default.
- W3127820163 date "2021-02-10" @default.
- W3127820163 modified "2023-09-29" @default.
- W3127820163 title "An Iterative, Frequentist Approach for Latent Class Analysis to Evaluate Conditionally Dependent Diagnostic Tests" @default.
- W3127820163 cites W1979007740 @default.
- W3127820163 cites W1983909194 @default.
- W3127820163 cites W1995134853 @default.
- W3127820163 cites W1997534896 @default.
- W3127820163 cites W2008545502 @default.
- W3127820163 cites W2009735186 @default.
- W3127820163 cites W2014381491 @default.
- W3127820163 cites W2018468598 @default.
- W3127820163 cites W2030709754 @default.
- W3127820163 cites W2040536528 @default.
- W3127820163 cites W2042003389 @default.
- W3127820163 cites W2058370701 @default.
- W3127820163 cites W2064129790 @default.
- W3127820163 cites W2067898611 @default.
- W3127820163 cites W2068225985 @default.
- W3127820163 cites W2081750390 @default.
- W3127820163 cites W2088518886 @default.
- W3127820163 cites W2093268197 @default.
- W3127820163 cites W2111990686 @default.
- W3127820163 cites W2134012062 @default.
- W3127820163 cites W2136685065 @default.
- W3127820163 cites W2143226349 @default.
- W3127820163 cites W2147018495 @default.
- W3127820163 cites W2159774315 @default.
- W3127820163 cites W2472859841 @default.
- W3127820163 cites W2899010067 @default.
- W3127820163 cites W2902915667 @default.
- W3127820163 cites W2922493104 @default.
- W3127820163 cites W4236060139 @default.
- W3127820163 cites W4243861942 @default.
- W3127820163 doi "https://doi.org/10.3389/fvets.2021.588176" @default.
- W3127820163 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7928357" @default.
- W3127820163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33681320" @default.
- W3127820163 hasPublicationYear "2021" @default.
- W3127820163 type Work @default.
- W3127820163 sameAs 3127820163 @default.
- W3127820163 citedByCount "2" @default.
- W3127820163 countsByYear W31278201632022 @default.
- W3127820163 crossrefType "journal-article" @default.
- W3127820163 hasAuthorship W3127820163A5005164328 @default.
- W3127820163 hasAuthorship W3127820163A5018045682 @default.
- W3127820163 hasAuthorship W3127820163A5038390247 @default.
- W3127820163 hasBestOaLocation W31278201631 @default.
- W3127820163 hasConcept C105795698 @default.
- W3127820163 hasConcept C107673813 @default.
- W3127820163 hasConcept C11413529 @default.
- W3127820163 hasConcept C154945302 @default.
- W3127820163 hasConcept C156216132 @default.
- W3127820163 hasConcept C160234255 @default.
- W3127820163 hasConcept C162376815 @default.
- W3127820163 hasConcept C174920663 @default.
- W3127820163 hasConcept C19768560 @default.
- W3127820163 hasConcept C2777212361 @default.
- W3127820163 hasConcept C33923547 @default.
- W3127820163 hasConcept C35651441 @default.
- W3127820163 hasConcept C41008148 @default.
- W3127820163 hasConcept C44492722 @default.
- W3127820163 hasConcept C65965080 @default.
- W3127820163 hasConcept C70727504 @default.
- W3127820163 hasConcept C79772020 @default.
- W3127820163 hasConceptScore W3127820163C105795698 @default.
- W3127820163 hasConceptScore W3127820163C107673813 @default.
- W3127820163 hasConceptScore W3127820163C11413529 @default.
- W3127820163 hasConceptScore W3127820163C154945302 @default.
- W3127820163 hasConceptScore W3127820163C156216132 @default.
- W3127820163 hasConceptScore W3127820163C160234255 @default.
- W3127820163 hasConceptScore W3127820163C162376815 @default.
- W3127820163 hasConceptScore W3127820163C174920663 @default.
- W3127820163 hasConceptScore W3127820163C19768560 @default.
- W3127820163 hasConceptScore W3127820163C2777212361 @default.
- W3127820163 hasConceptScore W3127820163C33923547 @default.
- W3127820163 hasConceptScore W3127820163C35651441 @default.
- W3127820163 hasConceptScore W3127820163C41008148 @default.
- W3127820163 hasConceptScore W3127820163C44492722 @default.
- W3127820163 hasConceptScore W3127820163C65965080 @default.
- W3127820163 hasConceptScore W3127820163C70727504 @default.
- W3127820163 hasConceptScore W3127820163C79772020 @default.
- W3127820163 hasFunder F4320321114 @default.
- W3127820163 hasLocation W31278201631 @default.
- W3127820163 hasLocation W31278201632 @default.
- W3127820163 hasOpenAccess W3127820163 @default.
- W3127820163 hasPrimaryLocation W31278201631 @default.
- W3127820163 hasRelatedWork W10970137 @default.
- W3127820163 hasRelatedWork W12193145 @default.
- W3127820163 hasRelatedWork W12245731 @default.
- W3127820163 hasRelatedWork W1471855 @default.
- W3127820163 hasRelatedWork W2864471 @default.
- W3127820163 hasRelatedWork W3801212 @default.
- W3127820163 hasRelatedWork W3980598 @default.
- W3127820163 hasRelatedWork W6921400 @default.
- W3127820163 hasRelatedWork W8445148 @default.
- W3127820163 hasRelatedWork W8565002 @default.