Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127861532> ?p ?o ?g. }
- W3127861532 endingPage "20" @default.
- W3127861532 startingPage "1" @default.
- W3127861532 abstract "In the present day, there are many diseases which need to be identified at their early stages to start relevant treatments. If not, they could be uncurable and deadly. Due to this reason, there is a need of analysing complex medical data, medical reports, and medical images at a lesser time but with greater accuracy. There are even some instances where certain abnormalities cannot be directly recognized by humans. In healthcare for computational decision making, machine learning approaches are being used in these types of situations where a crucial data analysis needs to be performed on medical data to reveal hidden relationships or abnormalities which are not visible to humans. Implementing algorithms to perform such tasks itself is difficult, but what makes it even more challenging is to increase the accuracy of the algorithm while decreasing the required time for the algorithm to execute. In the early days, processing of large amount of medical data was an important task which resulted in machine learning being adapted in the biological domain. Since this happened, the biology and biomedical fields have been reaching higher levels by exploring more knowledge and identifying relationships which were never observed before. Reaching to its peak now the concern is being diverted towards treating patients not only based on the type of disease but also their genetics, which is known as precision medicine. Modifications in machine learning algorithms are being performed and tested daily to improve the performance of the algorithms in analysing and presenting more accurate information. In the healthcare field, starting from information extraction from medical documents until the prediction or diagnosis of a disease, machine learning has been involved. Medical imaging is a section that was greatly improved with the integration of machine learning algorithms to the field of computational biology. Nowadays, many disease diagnoses are being performed by medical image processing using machine learning algorithms. In addition, patient care, resource allocation, and research on treatments for various diseases are also being performed using machine learning-based computational decision making. Throughout this paper, various machine learning algorithms and approaches that are being used for decision making in the healthcare sector will be discussed along with the involvement of machine learning in healthcare applications in the current context. With the explored knowledge, it was evident that neural network-based deep learning methods have performed extremely well in the field of computational biology with the support of the high processing power of modern sophisticated computers and are being extensively applied because of their high predicting accuracy and reliability. When giving concern towards the big picture by combining the observations, it is noticeable that computational biology and biomedicine-based decision making in healthcare have now become dependent on machine learning algorithms, and thus they cannot be separated from the field of artificial intelligence." @default.
- W3127861532 created "2021-02-15" @default.
- W3127861532 creator A5040013505 @default.
- W3127861532 creator A5057666061 @default.
- W3127861532 date "2021-01-27" @default.
- W3127861532 modified "2023-10-10" @default.
- W3127861532 title "Involvement of Machine Learning Tools in Healthcare Decision Making" @default.
- W3127861532 cites W129507607 @default.
- W3127861532 cites W1885363765 @default.
- W3127861532 cites W1895958524 @default.
- W3127861532 cites W1991645955 @default.
- W3127861532 cites W2065613288 @default.
- W3127861532 cites W2075709579 @default.
- W3127861532 cites W2103248916 @default.
- W3127861532 cites W2162801723 @default.
- W3127861532 cites W2169815691 @default.
- W3127861532 cites W2177870565 @default.
- W3127861532 cites W2335383608 @default.
- W3127861532 cites W2478660752 @default.
- W3127861532 cites W2522692516 @default.
- W3127861532 cites W2525984666 @default.
- W3127861532 cites W2527225495 @default.
- W3127861532 cites W2561113426 @default.
- W3127861532 cites W2573624449 @default.
- W3127861532 cites W2588978745 @default.
- W3127861532 cites W2616634871 @default.
- W3127861532 cites W2626450301 @default.
- W3127861532 cites W2727650337 @default.
- W3127861532 cites W2735331278 @default.
- W3127861532 cites W2747774349 @default.
- W3127861532 cites W2772810371 @default.
- W3127861532 cites W2789367970 @default.
- W3127861532 cites W2794313083 @default.
- W3127861532 cites W2797542451 @default.
- W3127861532 cites W2809339399 @default.
- W3127861532 cites W2889277491 @default.
- W3127861532 cites W2902712933 @default.
- W3127861532 cites W2903099708 @default.
- W3127861532 cites W2927755428 @default.
- W3127861532 cites W2937002248 @default.
- W3127861532 cites W2947565979 @default.
- W3127861532 cites W2952523812 @default.
- W3127861532 cites W2955975353 @default.
- W3127861532 cites W2966483024 @default.
- W3127861532 cites W2967820869 @default.
- W3127861532 cites W2979414334 @default.
- W3127861532 cites W2981188034 @default.
- W3127861532 cites W2982822400 @default.
- W3127861532 cites W2992625249 @default.
- W3127861532 cites W3002843673 @default.
- W3127861532 cites W3009158610 @default.
- W3127861532 cites W3011224866 @default.
- W3127861532 cites W3042081405 @default.
- W3127861532 cites W3118395273 @default.
- W3127861532 cites W1986250503 @default.
- W3127861532 doi "https://doi.org/10.1155/2021/6679512" @default.
- W3127861532 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7857908" @default.
- W3127861532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33575021" @default.
- W3127861532 hasPublicationYear "2021" @default.
- W3127861532 type Work @default.
- W3127861532 sameAs 3127861532 @default.
- W3127861532 citedByCount "69" @default.
- W3127861532 countsByYear W31278615322021 @default.
- W3127861532 countsByYear W31278615322022 @default.
- W3127861532 countsByYear W31278615322023 @default.
- W3127861532 crossrefType "journal-article" @default.
- W3127861532 hasAuthorship W3127861532A5040013505 @default.
- W3127861532 hasAuthorship W3127861532A5057666061 @default.
- W3127861532 hasBestOaLocation W31278615321 @default.
- W3127861532 hasConcept C119857082 @default.
- W3127861532 hasConcept C127413603 @default.
- W3127861532 hasConcept C134306372 @default.
- W3127861532 hasConcept C142724271 @default.
- W3127861532 hasConcept C154945302 @default.
- W3127861532 hasConcept C160735492 @default.
- W3127861532 hasConcept C162324750 @default.
- W3127861532 hasConcept C163763905 @default.
- W3127861532 hasConcept C201995342 @default.
- W3127861532 hasConcept C202444582 @default.
- W3127861532 hasConcept C2522767166 @default.
- W3127861532 hasConcept C2780451532 @default.
- W3127861532 hasConcept C33923547 @default.
- W3127861532 hasConcept C36503486 @default.
- W3127861532 hasConcept C41008148 @default.
- W3127861532 hasConcept C50522688 @default.
- W3127861532 hasConcept C71924100 @default.
- W3127861532 hasConcept C9652623 @default.
- W3127861532 hasConceptScore W3127861532C119857082 @default.
- W3127861532 hasConceptScore W3127861532C127413603 @default.
- W3127861532 hasConceptScore W3127861532C134306372 @default.
- W3127861532 hasConceptScore W3127861532C142724271 @default.
- W3127861532 hasConceptScore W3127861532C154945302 @default.
- W3127861532 hasConceptScore W3127861532C160735492 @default.
- W3127861532 hasConceptScore W3127861532C162324750 @default.
- W3127861532 hasConceptScore W3127861532C163763905 @default.
- W3127861532 hasConceptScore W3127861532C201995342 @default.
- W3127861532 hasConceptScore W3127861532C202444582 @default.
- W3127861532 hasConceptScore W3127861532C2522767166 @default.