Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127865718> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3127865718 abstract "The Quantum Approximate Optimization Ansatz (QAOA) is a prominent example of variational quantum algorithms. We propose a generalized QAOA ansatz called CD-QAOA, which is inspired by the counter-diabatic (CD) driving procedure, designed for quantum many-body systems, and optimized using a reinforcement learning (RL) approach. The resulting hybrid control algorithm proves versatile in preparing the ground state of quantum-chaotic many-body spin chains, by minimizing the energy. We show that using terms occurring in the adiabatic gauge potential as additional control unitaries, it is possible to achieve fast high-fidelity many-body control away from the adiabatic regime. While each unitary retains the conventional QAOA-intrinsic continuous control degree of freedom such as the time duration, we take into account the order of the multiple available unitaries appearing in the control sequence as an additional discrete optimization problem. Endowing the policy gradient algorithm with an autoregressive deep learning architecture to capture causality, we train the RL agent to construct optimal sequences of unitaries. The algorithm has no access to the quantum state, and we find that the protocol learned on small systems may generalize to larger systems. By scanning a range of protocol durations, we present numerical evidence for a finite quantum speed limit in the nonintegrable mixed-field spin-1/2 Ising model, and for the suitability of the ansatz to prepare ground states of the spin-1 Heisenberg chain in the long-range and topologically ordered parameter regimes. This work paves the way to incorporate recent success from deep learning for the purpose of quantum many-body control." @default.
- W3127865718 created "2021-02-15" @default.
- W3127865718 creator A5015860750 @default.
- W3127865718 creator A5028118102 @default.
- W3127865718 creator A5079855755 @default.
- W3127865718 date "2021-03-15" @default.
- W3127865718 modified "2023-10-18" @default.
- W3127865718 title "Reinforcement Learning for Many-Body Ground State Preparation based on Counter-Diabatic Driving" @default.
- W3127865718 hasPublicationYear "2021" @default.
- W3127865718 type Work @default.
- W3127865718 sameAs 3127865718 @default.
- W3127865718 citedByCount "0" @default.
- W3127865718 crossrefType "journal-article" @default.
- W3127865718 hasAuthorship W3127865718A5015860750 @default.
- W3127865718 hasAuthorship W3127865718A5028118102 @default.
- W3127865718 hasAuthorship W3127865718A5079855755 @default.
- W3127865718 hasConcept C109663097 @default.
- W3127865718 hasConcept C121332964 @default.
- W3127865718 hasConcept C130979935 @default.
- W3127865718 hasConcept C154945302 @default.
- W3127865718 hasConcept C41008148 @default.
- W3127865718 hasConcept C42704618 @default.
- W3127865718 hasConcept C62520636 @default.
- W3127865718 hasConcept C84114770 @default.
- W3127865718 hasConcept C97355855 @default.
- W3127865718 hasConcept C97541855 @default.
- W3127865718 hasConceptScore W3127865718C109663097 @default.
- W3127865718 hasConceptScore W3127865718C121332964 @default.
- W3127865718 hasConceptScore W3127865718C130979935 @default.
- W3127865718 hasConceptScore W3127865718C154945302 @default.
- W3127865718 hasConceptScore W3127865718C41008148 @default.
- W3127865718 hasConceptScore W3127865718C42704618 @default.
- W3127865718 hasConceptScore W3127865718C62520636 @default.
- W3127865718 hasConceptScore W3127865718C84114770 @default.
- W3127865718 hasConceptScore W3127865718C97355855 @default.
- W3127865718 hasConceptScore W3127865718C97541855 @default.
- W3127865718 hasLocation W31278657181 @default.
- W3127865718 hasOpenAccess W3127865718 @default.
- W3127865718 hasPrimaryLocation W31278657181 @default.
- W3127865718 hasRelatedWork W132851871 @default.
- W3127865718 hasRelatedWork W1965719193 @default.
- W3127865718 hasRelatedWork W2018479058 @default.
- W3127865718 hasRelatedWork W2795606476 @default.
- W3127865718 hasRelatedWork W2796248767 @default.
- W3127865718 hasRelatedWork W2972223037 @default.
- W3127865718 hasRelatedWork W2980075761 @default.
- W3127865718 hasRelatedWork W301274691 @default.
- W3127865718 hasRelatedWork W3048705243 @default.
- W3127865718 hasRelatedWork W3092321087 @default.
- W3127865718 hasRelatedWork W3100806676 @default.
- W3127865718 hasRelatedWork W3103720553 @default.
- W3127865718 hasRelatedWork W3111361155 @default.
- W3127865718 hasRelatedWork W3135397694 @default.
- W3127865718 hasRelatedWork W3169383581 @default.
- W3127865718 hasRelatedWork W3180437594 @default.
- W3127865718 hasRelatedWork W3182251839 @default.
- W3127865718 hasRelatedWork W3184046874 @default.
- W3127865718 hasRelatedWork W3197154490 @default.
- W3127865718 isParatext "false" @default.
- W3127865718 isRetracted "false" @default.
- W3127865718 magId "3127865718" @default.
- W3127865718 workType "article" @default.