Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127869660> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3127869660 abstract "Aiming at the problem that the dose-effect data of traditional Chinese medicine are of multi-dimensional structure, this paper introduces a kind of data fitting method which is relatively accurate, efficient and effective. This method utilizes softmax regression function to build a fitting model for the multidimensional dose-effect data of traditional Chinese medicine and this paper suggests an improved particle swarm optimization (PSO) algorithm to make the fitting of the multi-dimensional dose-effect data of traditional Chinese medicine. Firstly, this paper adopts Min-Max normalization method to normalize the data. Secondly, this paper utilizes a transformation matrix to make a fast dimensional transformation. Thirdly, this paper uses softmax regression function to build the mathematical data fitting model and designs a kind of softmax evaluation function for computing adaptability in PSO algorithm. In the end, this paper extends PSO for single variable to the optimization of multidimensional variables, designs a kind of simplified velocity formula, adopts a kind of gradual learning and update strategy, and applies the improved PSO algorithm to make the fitting optimization. From the results of the experiment, our method is more accurate than the other 2 methods and it's more efficient than hill climbing algorithm." @default.
- W3127869660 created "2021-02-15" @default.
- W3127869660 creator A5006443452 @default.
- W3127869660 creator A5011688784 @default.
- W3127869660 creator A5013653310 @default.
- W3127869660 creator A5015470164 @default.
- W3127869660 creator A5019645727 @default.
- W3127869660 creator A5086967620 @default.
- W3127869660 date "2020-11-06" @default.
- W3127869660 modified "2023-09-23" @default.
- W3127869660 title "A Fitting Method of Dose-Effect Data of Traditional Chinese Medicine Fusing Softmax Regression and an Improved PSO Algorithm" @default.
- W3127869660 cites W2235553398 @default.
- W3127869660 cites W2956401369 @default.
- W3127869660 cites W2967907195 @default.
- W3127869660 doi "https://doi.org/10.1145/3443467.3443879" @default.
- W3127869660 hasPublicationYear "2020" @default.
- W3127869660 type Work @default.
- W3127869660 sameAs 3127869660 @default.
- W3127869660 citedByCount "0" @default.
- W3127869660 crossrefType "proceedings-article" @default.
- W3127869660 hasAuthorship W3127869660A5006443452 @default.
- W3127869660 hasAuthorship W3127869660A5011688784 @default.
- W3127869660 hasAuthorship W3127869660A5013653310 @default.
- W3127869660 hasAuthorship W3127869660A5015470164 @default.
- W3127869660 hasAuthorship W3127869660A5019645727 @default.
- W3127869660 hasAuthorship W3127869660A5086967620 @default.
- W3127869660 hasConcept C104317684 @default.
- W3127869660 hasConcept C11413529 @default.
- W3127869660 hasConcept C126255220 @default.
- W3127869660 hasConcept C136886441 @default.
- W3127869660 hasConcept C144024400 @default.
- W3127869660 hasConcept C154945302 @default.
- W3127869660 hasConcept C185592680 @default.
- W3127869660 hasConcept C188441871 @default.
- W3127869660 hasConcept C19165224 @default.
- W3127869660 hasConcept C204241405 @default.
- W3127869660 hasConcept C33923547 @default.
- W3127869660 hasConcept C41008148 @default.
- W3127869660 hasConcept C50644808 @default.
- W3127869660 hasConcept C55493867 @default.
- W3127869660 hasConcept C85617194 @default.
- W3127869660 hasConceptScore W3127869660C104317684 @default.
- W3127869660 hasConceptScore W3127869660C11413529 @default.
- W3127869660 hasConceptScore W3127869660C126255220 @default.
- W3127869660 hasConceptScore W3127869660C136886441 @default.
- W3127869660 hasConceptScore W3127869660C144024400 @default.
- W3127869660 hasConceptScore W3127869660C154945302 @default.
- W3127869660 hasConceptScore W3127869660C185592680 @default.
- W3127869660 hasConceptScore W3127869660C188441871 @default.
- W3127869660 hasConceptScore W3127869660C19165224 @default.
- W3127869660 hasConceptScore W3127869660C204241405 @default.
- W3127869660 hasConceptScore W3127869660C33923547 @default.
- W3127869660 hasConceptScore W3127869660C41008148 @default.
- W3127869660 hasConceptScore W3127869660C50644808 @default.
- W3127869660 hasConceptScore W3127869660C55493867 @default.
- W3127869660 hasConceptScore W3127869660C85617194 @default.
- W3127869660 hasLocation W31278696601 @default.
- W3127869660 hasOpenAccess W3127869660 @default.
- W3127869660 hasPrimaryLocation W31278696601 @default.
- W3127869660 hasRelatedWork W2888789309 @default.
- W3127869660 hasRelatedWork W2891743287 @default.
- W3127869660 hasRelatedWork W2913039608 @default.
- W3127869660 hasRelatedWork W2922692936 @default.
- W3127869660 hasRelatedWork W2971416272 @default.
- W3127869660 hasRelatedWork W3000076038 @default.
- W3127869660 hasRelatedWork W3185514949 @default.
- W3127869660 hasRelatedWork W4283328349 @default.
- W3127869660 hasRelatedWork W4287904794 @default.
- W3127869660 hasRelatedWork W4307834408 @default.
- W3127869660 isParatext "false" @default.
- W3127869660 isRetracted "false" @default.
- W3127869660 magId "3127869660" @default.
- W3127869660 workType "article" @default.