Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127924433> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3127924433 endingPage "386" @default.
- W3127924433 startingPage "370" @default.
- W3127924433 abstract "Identification and classification of protein families are one of the most significant problem in bioinformatics and protein studies. It is essential to specify the family of a protein since proteins are highly used in smart drug therapies, protein functions, and, in some cases, phylogenetic trees. Some sequencing techniques provide researchers to identify the biological similarities of protein families and functions. Yet, determining these families with sequencing applications requires huge amount of time. Thus, a computer and artificial intelligence based classification system is needed to save time and avoid complexity in protein classification process. In order to designate the protein families with computeraided systems, protein sequences need to be converted to the numerical representations. In this paper, we provide a novel protein mapping method based on Fibonacci numbers and hashing table (FIBHASH). Each amino acid code is assigned to the Fibonacci numbers based on integer representations respectively. Later, these amino acid codes are inserted a hashing table with the size of 20 to be classified with recurrent neural networks. To determine the performance of the proposed mapping method, we used accuracy, f1-score, recall, precision, and AUC evaluation criteria. In addition, the results of evaluation metrics with other protein mapping techniques including EIIP, hydrophobicity, CPNR, Atchley factors, BLOSUM62, PAM250, binary one-hot encoding, and randomly encoded representations are compared. The proposed method showed a promising result with an accuracy of 92.77%, and 0.98 AUC score." @default.
- W3127924433 created "2021-02-15" @default.
- W3127924433 creator A5029567697 @default.
- W3127924433 creator A5047460567 @default.
- W3127924433 date "2021-01-27" @default.
- W3127924433 modified "2023-10-18" @default.
- W3127924433 title "A novel Fibonacci hash method for protein family identification by using recurrent neural networks" @default.
- W3127924433 doi "https://doi.org/10.3906/elk-2003-116" @default.
- W3127924433 hasPublicationYear "2021" @default.
- W3127924433 type Work @default.
- W3127924433 sameAs 3127924433 @default.
- W3127924433 citedByCount "3" @default.
- W3127924433 countsByYear W31279244332021 @default.
- W3127924433 countsByYear W31279244332022 @default.
- W3127924433 crossrefType "journal-article" @default.
- W3127924433 hasAuthorship W3127924433A5029567697 @default.
- W3127924433 hasAuthorship W3127924433A5047460567 @default.
- W3127924433 hasBestOaLocation W31279244331 @default.
- W3127924433 hasConcept C104317684 @default.
- W3127924433 hasConcept C114614502 @default.
- W3127924433 hasConcept C116834253 @default.
- W3127924433 hasConcept C119857082 @default.
- W3127924433 hasConcept C153180895 @default.
- W3127924433 hasConcept C154945302 @default.
- W3127924433 hasConcept C171897839 @default.
- W3127924433 hasConcept C173734053 @default.
- W3127924433 hasConcept C199360897 @default.
- W3127924433 hasConcept C33923547 @default.
- W3127924433 hasConcept C38652104 @default.
- W3127924433 hasConcept C41008148 @default.
- W3127924433 hasConcept C50644808 @default.
- W3127924433 hasConcept C54355233 @default.
- W3127924433 hasConcept C59822182 @default.
- W3127924433 hasConcept C67388219 @default.
- W3127924433 hasConcept C86803240 @default.
- W3127924433 hasConcept C97137487 @default.
- W3127924433 hasConcept C99138194 @default.
- W3127924433 hasConceptScore W3127924433C104317684 @default.
- W3127924433 hasConceptScore W3127924433C114614502 @default.
- W3127924433 hasConceptScore W3127924433C116834253 @default.
- W3127924433 hasConceptScore W3127924433C119857082 @default.
- W3127924433 hasConceptScore W3127924433C153180895 @default.
- W3127924433 hasConceptScore W3127924433C154945302 @default.
- W3127924433 hasConceptScore W3127924433C171897839 @default.
- W3127924433 hasConceptScore W3127924433C173734053 @default.
- W3127924433 hasConceptScore W3127924433C199360897 @default.
- W3127924433 hasConceptScore W3127924433C33923547 @default.
- W3127924433 hasConceptScore W3127924433C38652104 @default.
- W3127924433 hasConceptScore W3127924433C41008148 @default.
- W3127924433 hasConceptScore W3127924433C50644808 @default.
- W3127924433 hasConceptScore W3127924433C54355233 @default.
- W3127924433 hasConceptScore W3127924433C59822182 @default.
- W3127924433 hasConceptScore W3127924433C67388219 @default.
- W3127924433 hasConceptScore W3127924433C86803240 @default.
- W3127924433 hasConceptScore W3127924433C97137487 @default.
- W3127924433 hasConceptScore W3127924433C99138194 @default.
- W3127924433 hasIssue "1" @default.
- W3127924433 hasLocation W31279244331 @default.
- W3127924433 hasOpenAccess W3127924433 @default.
- W3127924433 hasPrimaryLocation W31279244331 @default.
- W3127924433 hasRelatedWork W1501220409 @default.
- W3127924433 hasRelatedWork W1975078462 @default.
- W3127924433 hasRelatedWork W1988408736 @default.
- W3127924433 hasRelatedWork W2056763800 @default.
- W3127924433 hasRelatedWork W2082957703 @default.
- W3127924433 hasRelatedWork W2388078788 @default.
- W3127924433 hasRelatedWork W2391206957 @default.
- W3127924433 hasRelatedWork W3009247102 @default.
- W3127924433 hasRelatedWork W69216466 @default.
- W3127924433 hasRelatedWork W1629725936 @default.
- W3127924433 hasVolume "29" @default.
- W3127924433 isParatext "false" @default.
- W3127924433 isRetracted "false" @default.
- W3127924433 magId "3127924433" @default.
- W3127924433 workType "article" @default.