Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127949610> ?p ?o ?g. }
- W3127949610 endingPage "106863" @default.
- W3127949610 startingPage "106863" @default.
- W3127949610 abstract "Since experimental studies in the field of nanofluid pool boiling requires costly and time-consuming tests, numerical methods such as artificial neural networks with higher predictability and nonlinear features are suitable for prediction and modeling of problem parameters. In this paper, 180 pool boiling laboratory data of Fe 3 O 4 /water nanofluid are employed as datasets used for network training to determine the effect of different parameters of nanofluid pool boiling on Boiling Heat Transfer Coefficient (BHTC) and wall superheat. The concerned input parameters for the neural network include concentration, roughness, and heat flux, while the network outputs are the BHTC and wall superheat. Finally, it becomes clear that the trainbr training algorithm with the optimal quantity of 41 neurons within the hidden layer shows the best performance. In addition, the present model can accurately predict the BHTC and wall superheat with correlation coefficients (R) of 0.99936 and 0.9986 and the mean square error (mse) of 0.103 and 0.013, respectively. Also, given the optimization objectives considered in this research, including maximizing the heat transfer coefficient and minimizing the wall superheat in the nanofluid pool boiling process, the multi-objective genetic algorithm has been used to optimize the two objective functions concerned. •ANN and GA were utilized in order to optimize the BHTC. •The GA was employed to create an interaction between the target functions. •There is an accordance between the target data and network outputs. •The optimal values occurred at 0.1 vol%, a roughness of 0.786μm. •The BHTC on the precipitated surface having low heat flux decreased." @default.
- W3127949610 created "2021-02-15" @default.
- W3127949610 creator A5007733880 @default.
- W3127949610 creator A5020022566 @default.
- W3127949610 creator A5050991529 @default.
- W3127949610 creator A5059361923 @default.
- W3127949610 creator A5067810597 @default.
- W3127949610 creator A5072746309 @default.
- W3127949610 creator A5076499230 @default.
- W3127949610 creator A5091169179 @default.
- W3127949610 date "2021-05-01" @default.
- W3127949610 modified "2023-10-17" @default.
- W3127949610 title "Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study" @default.
- W3127949610 cites W1966451863 @default.
- W3127949610 cites W2002870823 @default.
- W3127949610 cites W2005408440 @default.
- W3127949610 cites W2036472873 @default.
- W3127949610 cites W2046440816 @default.
- W3127949610 cites W2079489327 @default.
- W3127949610 cites W2101924093 @default.
- W3127949610 cites W2146152156 @default.
- W3127949610 cites W2151588623 @default.
- W3127949610 cites W2170949406 @default.
- W3127949610 cites W2280905358 @default.
- W3127949610 cites W2393233221 @default.
- W3127949610 cites W2522256353 @default.
- W3127949610 cites W2564811616 @default.
- W3127949610 cites W2607456036 @default.
- W3127949610 cites W2621242578 @default.
- W3127949610 cites W2625630868 @default.
- W3127949610 cites W2756818877 @default.
- W3127949610 cites W2890511330 @default.
- W3127949610 cites W2905272168 @default.
- W3127949610 cites W2948939766 @default.
- W3127949610 cites W2949624875 @default.
- W3127949610 cites W2950053338 @default.
- W3127949610 cites W2996191685 @default.
- W3127949610 cites W3025580500 @default.
- W3127949610 cites W3037769391 @default.
- W3127949610 cites W3044698197 @default.
- W3127949610 cites W3082690748 @default.
- W3127949610 doi "https://doi.org/10.1016/j.ijthermalsci.2021.106863" @default.
- W3127949610 hasPublicationYear "2021" @default.
- W3127949610 type Work @default.
- W3127949610 sameAs 3127949610 @default.
- W3127949610 citedByCount "32" @default.
- W3127949610 countsByYear W31279496102021 @default.
- W3127949610 countsByYear W31279496102022 @default.
- W3127949610 countsByYear W31279496102023 @default.
- W3127949610 crossrefType "journal-article" @default.
- W3127949610 hasAuthorship W3127949610A5007733880 @default.
- W3127949610 hasAuthorship W3127949610A5020022566 @default.
- W3127949610 hasAuthorship W3127949610A5050991529 @default.
- W3127949610 hasAuthorship W3127949610A5059361923 @default.
- W3127949610 hasAuthorship W3127949610A5067810597 @default.
- W3127949610 hasAuthorship W3127949610A5072746309 @default.
- W3127949610 hasAuthorship W3127949610A5076499230 @default.
- W3127949610 hasAuthorship W3127949610A5091169179 @default.
- W3127949610 hasConcept C107365816 @default.
- W3127949610 hasConcept C121332964 @default.
- W3127949610 hasConcept C154945302 @default.
- W3127949610 hasConcept C157777378 @default.
- W3127949610 hasConcept C159188206 @default.
- W3127949610 hasConcept C159985019 @default.
- W3127949610 hasConcept C192562407 @default.
- W3127949610 hasConcept C21946209 @default.
- W3127949610 hasConcept C29700514 @default.
- W3127949610 hasConcept C37114186 @default.
- W3127949610 hasConcept C41008148 @default.
- W3127949610 hasConcept C50517652 @default.
- W3127949610 hasConcept C50644808 @default.
- W3127949610 hasConcept C57879066 @default.
- W3127949610 hasConcept C71039073 @default.
- W3127949610 hasConcept C97355855 @default.
- W3127949610 hasConceptScore W3127949610C107365816 @default.
- W3127949610 hasConceptScore W3127949610C121332964 @default.
- W3127949610 hasConceptScore W3127949610C154945302 @default.
- W3127949610 hasConceptScore W3127949610C157777378 @default.
- W3127949610 hasConceptScore W3127949610C159188206 @default.
- W3127949610 hasConceptScore W3127949610C159985019 @default.
- W3127949610 hasConceptScore W3127949610C192562407 @default.
- W3127949610 hasConceptScore W3127949610C21946209 @default.
- W3127949610 hasConceptScore W3127949610C29700514 @default.
- W3127949610 hasConceptScore W3127949610C37114186 @default.
- W3127949610 hasConceptScore W3127949610C41008148 @default.
- W3127949610 hasConceptScore W3127949610C50517652 @default.
- W3127949610 hasConceptScore W3127949610C50644808 @default.
- W3127949610 hasConceptScore W3127949610C57879066 @default.
- W3127949610 hasConceptScore W3127949610C71039073 @default.
- W3127949610 hasConceptScore W3127949610C97355855 @default.
- W3127949610 hasFunder F4320321001 @default.
- W3127949610 hasFunder F4320321921 @default.
- W3127949610 hasFunder F4320335966 @default.
- W3127949610 hasLocation W31279496101 @default.
- W3127949610 hasOpenAccess W3127949610 @default.
- W3127949610 hasPrimaryLocation W31279496101 @default.
- W3127949610 hasRelatedWork W1992872739 @default.
- W3127949610 hasRelatedWork W2096258523 @default.