Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127973640> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3127973640 abstract "The volume of data collected in the industry has grown rapidly in recent years, transforming into a challenge the task of analyzing this data. To identify patterns and improve industrial processes, several Artificial Intelligence techniques can be used, especially clustering methods. This work applies the technique of clustering and dimensionality reduction in the mining industry, performing a case study in a public database about an iron mining flotation process. The K-means algorithm was used and it was able to identify a statistically significant difference between the clusters in the silica concentration value, an important impurity in the flotation process." @default.
- W3127973640 created "2021-02-15" @default.
- W3127973640 creator A5014601232 @default.
- W3127973640 creator A5024226498 @default.
- W3127973640 creator A5032878484 @default.
- W3127973640 date "2020-12-04" @default.
- W3127973640 modified "2023-10-14" @default.
- W3127973640 title "Unsupervised machine learning in industrial applications: a case study in iron mining" @default.
- W3127973640 cites W1492815834 @default.
- W3127973640 cites W1570448133 @default.
- W3127973640 cites W2041453653 @default.
- W3127973640 cites W2122410182 @default.
- W3127973640 cites W2601172051 @default.
- W3127973640 cites W282284432 @default.
- W3127973640 doi "https://doi.org/10.1109/ibssc51096.2020.9332174" @default.
- W3127973640 hasPublicationYear "2020" @default.
- W3127973640 type Work @default.
- W3127973640 sameAs 3127973640 @default.
- W3127973640 citedByCount "0" @default.
- W3127973640 crossrefType "proceedings-article" @default.
- W3127973640 hasAuthorship W3127973640A5014601232 @default.
- W3127973640 hasAuthorship W3127973640A5024226498 @default.
- W3127973640 hasAuthorship W3127973640A5032878484 @default.
- W3127973640 hasConcept C111919701 @default.
- W3127973640 hasConcept C119857082 @default.
- W3127973640 hasConcept C124101348 @default.
- W3127973640 hasConcept C127413603 @default.
- W3127973640 hasConcept C154945302 @default.
- W3127973640 hasConcept C201995342 @default.
- W3127973640 hasConcept C2780451532 @default.
- W3127973640 hasConcept C41008148 @default.
- W3127973640 hasConcept C70518039 @default.
- W3127973640 hasConcept C73555534 @default.
- W3127973640 hasConcept C8038995 @default.
- W3127973640 hasConcept C98045186 @default.
- W3127973640 hasConceptScore W3127973640C111919701 @default.
- W3127973640 hasConceptScore W3127973640C119857082 @default.
- W3127973640 hasConceptScore W3127973640C124101348 @default.
- W3127973640 hasConceptScore W3127973640C127413603 @default.
- W3127973640 hasConceptScore W3127973640C154945302 @default.
- W3127973640 hasConceptScore W3127973640C201995342 @default.
- W3127973640 hasConceptScore W3127973640C2780451532 @default.
- W3127973640 hasConceptScore W3127973640C41008148 @default.
- W3127973640 hasConceptScore W3127973640C70518039 @default.
- W3127973640 hasConceptScore W3127973640C73555534 @default.
- W3127973640 hasConceptScore W3127973640C8038995 @default.
- W3127973640 hasConceptScore W3127973640C98045186 @default.
- W3127973640 hasLocation W31279736401 @default.
- W3127973640 hasOpenAccess W3127973640 @default.
- W3127973640 hasPrimaryLocation W31279736401 @default.
- W3127973640 hasRelatedWork W10015831 @default.
- W3127973640 hasRelatedWork W11684367 @default.
- W3127973640 hasRelatedWork W12278135 @default.
- W3127973640 hasRelatedWork W13366983 @default.
- W3127973640 hasRelatedWork W13523948 @default.
- W3127973640 hasRelatedWork W2124813 @default.
- W3127973640 hasRelatedWork W3140435 @default.
- W3127973640 hasRelatedWork W3447867 @default.
- W3127973640 hasRelatedWork W4085024 @default.
- W3127973640 hasRelatedWork W5839721 @default.
- W3127973640 isParatext "false" @default.
- W3127973640 isRetracted "false" @default.
- W3127973640 magId "3127973640" @default.
- W3127973640 workType "article" @default.