Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128126711> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3128126711 abstract "Sentiment and Emotion detection in social media conversations remains a challenge and analyzing the people emotion emerged as an important task in this unprecedented time of COVID-19. People sentiment and emotions are affected by lockdowns, social distancing, travel, work-from-home, wearing mask, reading social media posting. Most of them are feeling sad, anger, depressed, and some of them are neutral and happy. The most recent Sentiment Analysis (SA) researches are done using Twitter dataset (short-text) and rule-based (sentiment lexicon) approach, the outcome of these SA models' results is not showing the consistent prediction of people sentiment about COVID-19. To mitigate and overcome limitations of lexicon approach, processing unstructured social media long text posting, getting context based sentiment score, model overfitting, performance problems of sentiment models, authors' proposed and built a novel multi-class SA model using extension of Bidirectional LSTM (SAB-LSTM) with additional layers. In this experiment SAB-LSTM model has been used to process long text of social media posting, news articles text dataset. Experiment result showed, SAB-LSTM model performance is better than traditional LSTM and BLSTM. Compared SAB-LSTM performance metric of Precision, Recall, F1 Score and sentiment score with traditional LSTM and BLSTM. For this experiment collected COVID-19 related dataset from various social media sources such as Twitter, Facebook, YouTube, News articles blogs and collected data from friends and family." @default.
- W3128126711 created "2021-02-15" @default.
- W3128126711 creator A5043267847 @default.
- W3128126711 creator A5087567623 @default.
- W3128126711 date "2020-12-04" @default.
- W3128126711 modified "2023-10-18" @default.
- W3128126711 title "Sentiment and Emotion in Social Media COVID-19 Conversations: SAB-LSTM Approach" @default.
- W3128126711 cites W1689711448 @default.
- W3128126711 cites W2022204871 @default.
- W3128126711 cites W2064675550 @default.
- W3128126711 cites W2080558111 @default.
- W3128126711 cites W2097726431 @default.
- W3128126711 cites W2131774270 @default.
- W3128126711 cites W2160660844 @default.
- W3128126711 cites W2941799245 @default.
- W3128126711 cites W2974182162 @default.
- W3128126711 doi "https://doi.org/10.1109/smart50582.2020.9337098" @default.
- W3128126711 hasPublicationYear "2020" @default.
- W3128126711 type Work @default.
- W3128126711 sameAs 3128126711 @default.
- W3128126711 citedByCount "14" @default.
- W3128126711 countsByYear W31281267112021 @default.
- W3128126711 countsByYear W31281267112022 @default.
- W3128126711 countsByYear W31281267112023 @default.
- W3128126711 crossrefType "proceedings-article" @default.
- W3128126711 hasAuthorship W3128126711A5043267847 @default.
- W3128126711 hasAuthorship W3128126711A5087567623 @default.
- W3128126711 hasBestOaLocation W31281267111 @default.
- W3128126711 hasConcept C122980154 @default.
- W3128126711 hasConcept C136764020 @default.
- W3128126711 hasConcept C143275388 @default.
- W3128126711 hasConcept C151730666 @default.
- W3128126711 hasConcept C154945302 @default.
- W3128126711 hasConcept C15744967 @default.
- W3128126711 hasConcept C204321447 @default.
- W3128126711 hasConcept C22019652 @default.
- W3128126711 hasConcept C2778121359 @default.
- W3128126711 hasConcept C2779302386 @default.
- W3128126711 hasConcept C2779343474 @default.
- W3128126711 hasConcept C41008148 @default.
- W3128126711 hasConcept C50644808 @default.
- W3128126711 hasConcept C518677369 @default.
- W3128126711 hasConcept C66402592 @default.
- W3128126711 hasConcept C77805123 @default.
- W3128126711 hasConcept C86803240 @default.
- W3128126711 hasConceptScore W3128126711C122980154 @default.
- W3128126711 hasConceptScore W3128126711C136764020 @default.
- W3128126711 hasConceptScore W3128126711C143275388 @default.
- W3128126711 hasConceptScore W3128126711C151730666 @default.
- W3128126711 hasConceptScore W3128126711C154945302 @default.
- W3128126711 hasConceptScore W3128126711C15744967 @default.
- W3128126711 hasConceptScore W3128126711C204321447 @default.
- W3128126711 hasConceptScore W3128126711C22019652 @default.
- W3128126711 hasConceptScore W3128126711C2778121359 @default.
- W3128126711 hasConceptScore W3128126711C2779302386 @default.
- W3128126711 hasConceptScore W3128126711C2779343474 @default.
- W3128126711 hasConceptScore W3128126711C41008148 @default.
- W3128126711 hasConceptScore W3128126711C50644808 @default.
- W3128126711 hasConceptScore W3128126711C518677369 @default.
- W3128126711 hasConceptScore W3128126711C66402592 @default.
- W3128126711 hasConceptScore W3128126711C77805123 @default.
- W3128126711 hasConceptScore W3128126711C86803240 @default.
- W3128126711 hasLocation W31281267111 @default.
- W3128126711 hasOpenAccess W3128126711 @default.
- W3128126711 hasPrimaryLocation W31281267111 @default.
- W3128126711 hasRelatedWork W2057854333 @default.
- W3128126711 hasRelatedWork W2152815769 @default.
- W3128126711 hasRelatedWork W2212852081 @default.
- W3128126711 hasRelatedWork W2297801999 @default.
- W3128126711 hasRelatedWork W2346975490 @default.
- W3128126711 hasRelatedWork W2787673610 @default.
- W3128126711 hasRelatedWork W2811020726 @default.
- W3128126711 hasRelatedWork W3015200540 @default.
- W3128126711 hasRelatedWork W3035042094 @default.
- W3128126711 hasRelatedWork W3068543531 @default.
- W3128126711 isParatext "false" @default.
- W3128126711 isRetracted "false" @default.
- W3128126711 magId "3128126711" @default.
- W3128126711 workType "article" @default.