Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128129546> ?p ?o ?g. }
- W3128129546 endingPage "103693" @default.
- W3128129546 startingPage "103693" @default.
- W3128129546 abstract "Diabetics has become a serious public health burden in China. Multiple complications appear with the progression of diabetics pose a serious threat to the quality of human life and health. We can prevent the progression of prediabetics to diabetics and delay the progression to diabetics by early identification of diabetics and prediabetics and timely intervention, which have positive significance for improving public health. Using machine learning techniques, we establish the noninvasive diabetics risk prediction model based on tongue features fusion and predict the risk of prediabetics and diabetics. Applying the type TFDA-1 Tongue Diagnosis Instrument, we collect tongue images, extract tongue features including color and texture features using TDAS, and extract the advanced tongue features with ResNet-50, achieve the fusion of the two features with GA_XGBT, finally establish the noninvasive diabetics risk prediction model and evaluate the performance of testing effectiveness. Cross-validation suggests the best performance of GA_XGBT model with fusion features, whose average CA is 0.821, the average AUROC is 0.924, the average AUPRC is 0.856, the average Precision is 0.834, the average Recall is 0.822, the average F1-score is 0.813. Test set suggests the best testing performance of GA_XGBT model, whose average CA is 0.81, the average AUROC is 0.918, the average AUPRC is 0.839, the average Precision is 0.821, the average Recall is 0.81, the average F1-score is 0.796. When we test prediabetics with GA_XGBT model, we find that the AUROC is 0.914, the Precision is 0.69, the Recall is 0.952, the F1-score is 0.8. When we test diabetics with GA_XGBT model, we find that the AUROC is 0.984, the Precision is 0.929, the Recall is 0.951, the F1-score is 0.94. Based on tongue features, the study uses classical machine learning algorithm and deep learning algorithm to maximum the respective advantages. We combine the prior knowledge and potential features together, establish the noninvasive diabetics risk prediction model with features fusion algorithm, and detect prediabetics and diabetics noninvasively. Our study presents a feasible method for establishing the association between diabetics and the tongue image information and prove that tongue image information is a potential marker which facilitates effective early diagnosis of prediabetics and diabetics." @default.
- W3128129546 created "2021-02-15" @default.
- W3128129546 creator A5000448122 @default.
- W3128129546 creator A5009328674 @default.
- W3128129546 creator A5017927845 @default.
- W3128129546 creator A5020952048 @default.
- W3128129546 creator A5028191146 @default.
- W3128129546 creator A5030208372 @default.
- W3128129546 creator A5031455640 @default.
- W3128129546 creator A5047086431 @default.
- W3128129546 creator A5048813984 @default.
- W3128129546 creator A5053804373 @default.
- W3128129546 creator A5058785622 @default.
- W3128129546 creator A5060313462 @default.
- W3128129546 creator A5067128808 @default.
- W3128129546 creator A5070062983 @default.
- W3128129546 creator A5071714020 @default.
- W3128129546 creator A5079594267 @default.
- W3128129546 creator A5079984286 @default.
- W3128129546 creator A5081082156 @default.
- W3128129546 creator A5081619411 @default.
- W3128129546 creator A5088158852 @default.
- W3128129546 creator A5090760933 @default.
- W3128129546 date "2021-03-01" @default.
- W3128129546 modified "2023-10-12" @default.
- W3128129546 title "A tongue features fusion approach to predicting prediabetes and diabetes with machine learning" @default.
- W3128129546 cites W1894362845 @default.
- W3128129546 cites W1915203688 @default.
- W3128129546 cites W1966716734 @default.
- W3128129546 cites W2006659490 @default.
- W3128129546 cites W2108376320 @default.
- W3128129546 cites W2120530673 @default.
- W3128129546 cites W2158935522 @default.
- W3128129546 cites W2171749815 @default.
- W3128129546 cites W2346808375 @default.
- W3128129546 cites W2470935161 @default.
- W3128129546 cites W2565085458 @default.
- W3128129546 cites W2606711273 @default.
- W3128129546 cites W2623881420 @default.
- W3128129546 cites W2778457736 @default.
- W3128129546 cites W2791713149 @default.
- W3128129546 cites W2797763839 @default.
- W3128129546 cites W2800630263 @default.
- W3128129546 cites W2806637238 @default.
- W3128129546 cites W2901348195 @default.
- W3128129546 cites W2914620309 @default.
- W3128129546 cites W2922347875 @default.
- W3128129546 cites W2933876793 @default.
- W3128129546 cites W2946040156 @default.
- W3128129546 cites W2951745747 @default.
- W3128129546 cites W2963308874 @default.
- W3128129546 cites W2967407343 @default.
- W3128129546 cites W2974911641 @default.
- W3128129546 cites W2988051067 @default.
- W3128129546 cites W2998324661 @default.
- W3128129546 cites W3004260685 @default.
- W3128129546 cites W3006816363 @default.
- W3128129546 cites W3010677011 @default.
- W3128129546 cites W3011592349 @default.
- W3128129546 cites W3015284486 @default.
- W3128129546 cites W3021159047 @default.
- W3128129546 cites W4229629337 @default.
- W3128129546 doi "https://doi.org/10.1016/j.jbi.2021.103693" @default.
- W3128129546 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33540076" @default.
- W3128129546 hasPublicationYear "2021" @default.
- W3128129546 type Work @default.
- W3128129546 sameAs 3128129546 @default.
- W3128129546 citedByCount "44" @default.
- W3128129546 countsByYear W31281295462021 @default.
- W3128129546 countsByYear W31281295462022 @default.
- W3128129546 countsByYear W31281295462023 @default.
- W3128129546 crossrefType "journal-article" @default.
- W3128129546 hasAuthorship W3128129546A5000448122 @default.
- W3128129546 hasAuthorship W3128129546A5009328674 @default.
- W3128129546 hasAuthorship W3128129546A5017927845 @default.
- W3128129546 hasAuthorship W3128129546A5020952048 @default.
- W3128129546 hasAuthorship W3128129546A5028191146 @default.
- W3128129546 hasAuthorship W3128129546A5030208372 @default.
- W3128129546 hasAuthorship W3128129546A5031455640 @default.
- W3128129546 hasAuthorship W3128129546A5047086431 @default.
- W3128129546 hasAuthorship W3128129546A5048813984 @default.
- W3128129546 hasAuthorship W3128129546A5053804373 @default.
- W3128129546 hasAuthorship W3128129546A5058785622 @default.
- W3128129546 hasAuthorship W3128129546A5060313462 @default.
- W3128129546 hasAuthorship W3128129546A5067128808 @default.
- W3128129546 hasAuthorship W3128129546A5070062983 @default.
- W3128129546 hasAuthorship W3128129546A5071714020 @default.
- W3128129546 hasAuthorship W3128129546A5079594267 @default.
- W3128129546 hasAuthorship W3128129546A5079984286 @default.
- W3128129546 hasAuthorship W3128129546A5081082156 @default.
- W3128129546 hasAuthorship W3128129546A5081619411 @default.
- W3128129546 hasAuthorship W3128129546A5088158852 @default.
- W3128129546 hasAuthorship W3128129546A5090760933 @default.
- W3128129546 hasBestOaLocation W31281295461 @default.
- W3128129546 hasConcept C134018914 @default.
- W3128129546 hasConcept C142724271 @default.
- W3128129546 hasConcept C154945302 @default.
- W3128129546 hasConcept C2777180221 @default.