Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128137617> ?p ?o ?g. }
- W3128137617 endingPage "3131" @default.
- W3128137617 startingPage "3104" @default.
- W3128137617 abstract "Purpose The purpose of this article is to analyze the state-of-the art in a systematic way, identifying the main research groups and their related topics. The types of studies found are fundamental for understanding the application of artificial neural networks (ANNs) in cemented soils and the potential for using the technique, as well as the feasibility of extrapolation to new geotechnical or civil and environmental engineering segments. Design/methodology/approach This work is characterized as being bibliometric and systematic research of an exploratory perspective of state-of-the-art. It also persuades the qualitative and quantitative data analysis of cemented soil improvement, biocemented or microbially induced calcite precipitation (MICP) soil improvement by prediction/modeling by ANN. This study sought to compile and study the state of the art of the topic which possibilities to have a critical view about the theme. To do so, two main databases were analyzed: Scopus and Web of Science. Systematic review techniques, as well as bibliometric indicators, were implemented. Findings This paper connected the network between the achievements of the researches and illustrated the main application of ANNs in soil improvement prediction, specifically on cemented-based soils and biocemented soils (e.g. MICP technique). Also, as a bibliometric and systematic review, this work could achieve the key points in the absence of researches involving soil-ANN, and it provided the understanding of the lack of exploratory studies to be approached in the near future. Research limitations/implications Because of the research topic the article suggested other applications of ANNs in geotechnical engineering, such as other tests not related to geomechanical resistance such as unconfined compression test test and triaxial test. Practical implications This article systematically and critically presents some interesting points in the direction of future research, such as the non-approach to the use of ANNs in biocementation processes, such as MICP. Social implications Regarding the social environment, the paper brings approaches on methods that somehow mitigate the computational use, or elements necessary for geotechnical improvement of the soil, thereby optimizing the same consequently. Originality/value Neural networks have been studied for a long time in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, soil cementation is a widespread technique and its prediction modes often require high computational strength, such parameters can be mitigated with the use of ANNs, because artificial intelligence seeks learning from the implementation of the data set, reducing computational cost and increasing accuracy." @default.
- W3128137617 created "2021-02-15" @default.
- W3128137617 creator A5001268725 @default.
- W3128137617 creator A5077113651 @default.
- W3128137617 creator A5085894853 @default.
- W3128137617 date "2021-02-04" @default.
- W3128137617 modified "2023-09-27" @default.
- W3128137617 title "Artificial neural networks applied for solidified soils data prediction: a bibliometric and systematic review" @default.
- W3128137617 cites W1483665481 @default.
- W3128137617 cites W1517466096 @default.
- W3128137617 cites W1526507729 @default.
- W3128137617 cites W1559801113 @default.
- W3128137617 cites W1963770203 @default.
- W3128137617 cites W1964216138 @default.
- W3128137617 cites W1973669178 @default.
- W3128137617 cites W1977168277 @default.
- W3128137617 cites W1979777795 @default.
- W3128137617 cites W1980321538 @default.
- W3128137617 cites W1981632401 @default.
- W3128137617 cites W1983899470 @default.
- W3128137617 cites W1995280642 @default.
- W3128137617 cites W1995816508 @default.
- W3128137617 cites W1997766408 @default.
- W3128137617 cites W2003686097 @default.
- W3128137617 cites W2015229236 @default.
- W3128137617 cites W2017159066 @default.
- W3128137617 cites W2018104091 @default.
- W3128137617 cites W2018856187 @default.
- W3128137617 cites W2022752101 @default.
- W3128137617 cites W2025745499 @default.
- W3128137617 cites W2029056188 @default.
- W3128137617 cites W2031258979 @default.
- W3128137617 cites W2031348893 @default.
- W3128137617 cites W2034359188 @default.
- W3128137617 cites W2041238042 @default.
- W3128137617 cites W2041858516 @default.
- W3128137617 cites W2041952459 @default.
- W3128137617 cites W2053525565 @default.
- W3128137617 cites W2059574064 @default.
- W3128137617 cites W2064565526 @default.
- W3128137617 cites W2070394663 @default.
- W3128137617 cites W2073949043 @default.
- W3128137617 cites W2078234636 @default.
- W3128137617 cites W2080982152 @default.
- W3128137617 cites W2086444748 @default.
- W3128137617 cites W2099507881 @default.
- W3128137617 cites W2116161277 @default.
- W3128137617 cites W2117780865 @default.
- W3128137617 cites W2118112014 @default.
- W3128137617 cites W2122782494 @default.
- W3128137617 cites W2178751732 @default.
- W3128137617 cites W2418032828 @default.
- W3128137617 cites W2486654687 @default.
- W3128137617 cites W2493592025 @default.
- W3128137617 cites W2541035757 @default.
- W3128137617 cites W2559219219 @default.
- W3128137617 cites W2582178953 @default.
- W3128137617 cites W2593866979 @default.
- W3128137617 cites W2607609229 @default.
- W3128137617 cites W2680004267 @default.
- W3128137617 cites W2737633470 @default.
- W3128137617 cites W2756956088 @default.
- W3128137617 cites W2769293769 @default.
- W3128137617 cites W2770653895 @default.
- W3128137617 cites W2775380900 @default.
- W3128137617 cites W2782790474 @default.
- W3128137617 cites W2783808536 @default.
- W3128137617 cites W2788840251 @default.
- W3128137617 cites W2789421584 @default.
- W3128137617 cites W2792369524 @default.
- W3128137617 cites W2792489795 @default.
- W3128137617 cites W2793192846 @default.
- W3128137617 cites W2794755170 @default.
- W3128137617 cites W2802744659 @default.
- W3128137617 cites W2802924707 @default.
- W3128137617 cites W2883231055 @default.
- W3128137617 cites W2888781714 @default.
- W3128137617 cites W2895134831 @default.
- W3128137617 cites W2901905224 @default.
- W3128137617 cites W2906374746 @default.
- W3128137617 cites W2908092150 @default.
- W3128137617 cites W2908561488 @default.
- W3128137617 cites W2908578206 @default.
- W3128137617 cites W2909197966 @default.
- W3128137617 cites W2911057972 @default.
- W3128137617 cites W2927142970 @default.
- W3128137617 cites W2941889941 @default.
- W3128137617 cites W2942549247 @default.
- W3128137617 cites W2946123023 @default.
- W3128137617 cites W2950792574 @default.
- W3128137617 cites W2958579047 @default.
- W3128137617 cites W2964417425 @default.
- W3128137617 cites W2971741962 @default.
- W3128137617 cites W2980595968 @default.
- W3128137617 cites W2981204399 @default.
- W3128137617 cites W2986957784 @default.
- W3128137617 cites W3000026197 @default.
- W3128137617 cites W3009266081 @default.