Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128169059> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3128169059 abstract "Automatic kinship verification using face images involves analyzing features and computing similarities between two input images to establish kin-relationship. It has gained significant interest from the research community and several approaches including deep learning architectures are proposed. One of the law enforcement applications of kinship analysis involves predicting the kin image given an input image. In other words, the question posed here is: “given an input image, can we generate a kin-image?” This paper attempts to generate kin-images using Generative Adversarial Learning for multiple kin-relations. The proposed FamilyGAN model incorporates three information, kin-gender, kinship loss, and reconstruction loss, in a GAN model to generate kin images. FamilyGAN is the first model capable of generating kin-images for multiple relations such as parent-child and siblings from a single model. On the WVU Kinship Video database, the proposed model shows very promising results for generating kin images. Experimental results show 71.34% kinship verification accuracy using the images generated via FamilyGAN." @default.
- W3128169059 created "2021-02-15" @default.
- W3128169059 creator A5011779957 @default.
- W3128169059 creator A5050521702 @default.
- W3128169059 creator A5087739263 @default.
- W3128169059 date "2020-01-01" @default.
- W3128169059 modified "2023-09-27" @default.
- W3128169059 title "FamilyGAN: Generating Kin Face Images Using Generative Adversarial Networks" @default.
- W3128169059 cites W1996337501 @default.
- W3128169059 cites W1998230826 @default.
- W3128169059 cites W2112295098 @default.
- W3128169059 cites W2565419990 @default.
- W3128169059 cites W2738051399 @default.
- W3128169059 cites W2884719956 @default.
- W3128169059 cites W2962793481 @default.
- W3128169059 cites W2963073614 @default.
- W3128169059 cites W2963460857 @default.
- W3128169059 cites W2963767194 @default.
- W3128169059 cites W3000451641 @default.
- W3128169059 cites W3101857744 @default.
- W3128169059 cites W3105535737 @default.
- W3128169059 cites W3108558923 @default.
- W3128169059 doi "https://doi.org/10.1007/978-3-030-67070-2_18" @default.
- W3128169059 hasPublicationYear "2020" @default.
- W3128169059 type Work @default.
- W3128169059 sameAs 3128169059 @default.
- W3128169059 citedByCount "2" @default.
- W3128169059 countsByYear W31281690592022 @default.
- W3128169059 countsByYear W31281690592023 @default.
- W3128169059 crossrefType "book-chapter" @default.
- W3128169059 hasAuthorship W3128169059A5011779957 @default.
- W3128169059 hasAuthorship W3128169059A5050521702 @default.
- W3128169059 hasAuthorship W3128169059A5087739263 @default.
- W3128169059 hasConcept C115961682 @default.
- W3128169059 hasConcept C138885662 @default.
- W3128169059 hasConcept C144348335 @default.
- W3128169059 hasConcept C145640554 @default.
- W3128169059 hasConcept C153180895 @default.
- W3128169059 hasConcept C154945302 @default.
- W3128169059 hasConcept C17744445 @default.
- W3128169059 hasConcept C199539241 @default.
- W3128169059 hasConcept C2779304628 @default.
- W3128169059 hasConcept C31972630 @default.
- W3128169059 hasConcept C37736160 @default.
- W3128169059 hasConcept C39890363 @default.
- W3128169059 hasConcept C41008148 @default.
- W3128169059 hasConcept C41895202 @default.
- W3128169059 hasConcept C78458016 @default.
- W3128169059 hasConcept C80444323 @default.
- W3128169059 hasConcept C86803240 @default.
- W3128169059 hasConceptScore W3128169059C115961682 @default.
- W3128169059 hasConceptScore W3128169059C138885662 @default.
- W3128169059 hasConceptScore W3128169059C144348335 @default.
- W3128169059 hasConceptScore W3128169059C145640554 @default.
- W3128169059 hasConceptScore W3128169059C153180895 @default.
- W3128169059 hasConceptScore W3128169059C154945302 @default.
- W3128169059 hasConceptScore W3128169059C17744445 @default.
- W3128169059 hasConceptScore W3128169059C199539241 @default.
- W3128169059 hasConceptScore W3128169059C2779304628 @default.
- W3128169059 hasConceptScore W3128169059C31972630 @default.
- W3128169059 hasConceptScore W3128169059C37736160 @default.
- W3128169059 hasConceptScore W3128169059C39890363 @default.
- W3128169059 hasConceptScore W3128169059C41008148 @default.
- W3128169059 hasConceptScore W3128169059C41895202 @default.
- W3128169059 hasConceptScore W3128169059C78458016 @default.
- W3128169059 hasConceptScore W3128169059C80444323 @default.
- W3128169059 hasConceptScore W3128169059C86803240 @default.
- W3128169059 hasLocation W31281690591 @default.
- W3128169059 hasOpenAccess W3128169059 @default.
- W3128169059 hasPrimaryLocation W31281690591 @default.
- W3128169059 hasRelatedWork W11117469 @default.
- W3128169059 hasRelatedWork W11424074 @default.
- W3128169059 hasRelatedWork W13187899 @default.
- W3128169059 hasRelatedWork W1602910 @default.
- W3128169059 hasRelatedWork W40380 @default.
- W3128169059 hasRelatedWork W4748126 @default.
- W3128169059 hasRelatedWork W8340350 @default.
- W3128169059 hasRelatedWork W9187480 @default.
- W3128169059 hasRelatedWork W9280766 @default.
- W3128169059 hasRelatedWork W9871412 @default.
- W3128169059 isParatext "false" @default.
- W3128169059 isRetracted "false" @default.
- W3128169059 magId "3128169059" @default.
- W3128169059 workType "book-chapter" @default.