Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128192055> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3128192055 abstract "In the simulation-based testing and evaluation of autonomous vehicles (AVs), how background vehicles (BVs) drive directly influences the AV's driving behavior and further impacts the testing result. Existing simulation platforms use either pre-determined trajectories or deterministic driving models to model the BVs' behaviors. However, pre-determined BV trajectories can not react to the AV's maneuvers, and deterministic models are different from real human drivers due to the lack of stochastic components and errors. Both methods lead to unrealistic traffic scenarios. This paper presents a learning-based stochastic driving model that meets the unique needs of AV testing, i.e. interactive and human-like. The model is built based on the long-short-term-memory (LSTM) architecture. By incorporating the concept of quantile-regression to the loss function of the model, the stochastic behaviors are reproduced without any prior assumption of human drivers. The model is trained with the large-scale naturalistic driving data (NDD) from the Safety Pilot Model Deployment(SPMD) project and then compared with a stochastic intelligent driving model (IDM). Analysis of individual trajectories shows that the proposed model can reproduce more similar trajectories to human drivers than IDM. To validate the ability of the proposed model in generating a naturalistic driving environment, traffic simulation experiments are implemented. The results show that the traffic flow parameters such as speed, range, and headway distribution match closely with the NDD, which is of significant importance for AV testing and evaluation." @default.
- W3128192055 created "2021-02-15" @default.
- W3128192055 creator A5011085340 @default.
- W3128192055 creator A5040647242 @default.
- W3128192055 creator A5059385567 @default.
- W3128192055 creator A5083695605 @default.
- W3128192055 creator A5090727900 @default.
- W3128192055 date "2021-02-04" @default.
- W3128192055 modified "2023-09-23" @default.
- W3128192055 title "A Learning-based Stochastic Driving Model for Autonomous Vehicle Testing" @default.
- W3128192055 cites W1562608420 @default.
- W3128192055 cites W1606018601 @default.
- W3128192055 cites W1965455100 @default.
- W3128192055 cites W1968719911 @default.
- W3128192055 cites W1970019272 @default.
- W3128192055 cites W2008039411 @default.
- W3128192055 cites W2042404299 @default.
- W3128192055 cites W2050947749 @default.
- W3128192055 cites W2054210802 @default.
- W3128192055 cites W2064675550 @default.
- W3128192055 cites W2089080831 @default.
- W3128192055 cites W2100411291 @default.
- W3128192055 cites W2511072509 @default.
- W3128192055 cites W2525936901 @default.
- W3128192055 cites W2755552418 @default.
- W3128192055 cites W2892439988 @default.
- W3128192055 cites W2910154747 @default.
- W3128192055 cites W2912798476 @default.
- W3128192055 cites W2923088732 @default.
- W3128192055 cites W2943847575 @default.
- W3128192055 cites W2943952718 @default.
- W3128192055 cites W2963165400 @default.
- W3128192055 cites W3005176458 @default.
- W3128192055 cites W3022552172 @default.
- W3128192055 cites W3032950445 @default.
- W3128192055 cites W3041038022 @default.
- W3128192055 cites W3121747332 @default.
- W3128192055 cites W3127647470 @default.
- W3128192055 doi "https://doi.org/10.48550/arxiv.2102.02602" @default.
- W3128192055 hasPublicationYear "2021" @default.
- W3128192055 type Work @default.
- W3128192055 sameAs 3128192055 @default.
- W3128192055 citedByCount "0" @default.
- W3128192055 crossrefType "posted-content" @default.
- W3128192055 hasAuthorship W3128192055A5011085340 @default.
- W3128192055 hasAuthorship W3128192055A5040647242 @default.
- W3128192055 hasAuthorship W3128192055A5059385567 @default.
- W3128192055 hasAuthorship W3128192055A5083695605 @default.
- W3128192055 hasAuthorship W3128192055A5090727900 @default.
- W3128192055 hasBestOaLocation W31281920551 @default.
- W3128192055 hasConcept C105795698 @default.
- W3128192055 hasConcept C127413603 @default.
- W3128192055 hasConcept C127491075 @default.
- W3128192055 hasConcept C146978453 @default.
- W3128192055 hasConcept C204323151 @default.
- W3128192055 hasConcept C2779240695 @default.
- W3128192055 hasConcept C2780689630 @default.
- W3128192055 hasConcept C33923547 @default.
- W3128192055 hasConcept C41008148 @default.
- W3128192055 hasConcept C44154836 @default.
- W3128192055 hasConceptScore W3128192055C105795698 @default.
- W3128192055 hasConceptScore W3128192055C127413603 @default.
- W3128192055 hasConceptScore W3128192055C127491075 @default.
- W3128192055 hasConceptScore W3128192055C146978453 @default.
- W3128192055 hasConceptScore W3128192055C204323151 @default.
- W3128192055 hasConceptScore W3128192055C2779240695 @default.
- W3128192055 hasConceptScore W3128192055C2780689630 @default.
- W3128192055 hasConceptScore W3128192055C33923547 @default.
- W3128192055 hasConceptScore W3128192055C41008148 @default.
- W3128192055 hasConceptScore W3128192055C44154836 @default.
- W3128192055 hasLocation W31281920551 @default.
- W3128192055 hasOpenAccess W3128192055 @default.
- W3128192055 hasPrimaryLocation W31281920551 @default.
- W3128192055 hasRelatedWork W2094866480 @default.
- W3128192055 hasRelatedWork W2164019812 @default.
- W3128192055 hasRelatedWork W2164917218 @default.
- W3128192055 hasRelatedWork W2287994400 @default.
- W3128192055 hasRelatedWork W2401132106 @default.
- W3128192055 hasRelatedWork W3035618011 @default.
- W3128192055 hasRelatedWork W3111468857 @default.
- W3128192055 hasRelatedWork W3124987741 @default.
- W3128192055 hasRelatedWork W589797580 @default.
- W3128192055 hasRelatedWork W61737357 @default.
- W3128192055 isParatext "false" @default.
- W3128192055 isRetracted "false" @default.
- W3128192055 magId "3128192055" @default.
- W3128192055 workType "article" @default.