Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128210092> ?p ?o ?g. }
- W3128210092 endingPage "664" @default.
- W3128210092 startingPage "647" @default.
- W3128210092 abstract "Abstract Caging grasps limit the mobility of an object to a bounded component of configuration space. We introduce a notion of partial cage quality based on maximal clearance of an escaping path. As computing this is a computationally demanding task even in a two-dimensional scenario, we propose a deep learning approach. We design two convolutional neural networks and construct a pipeline for real-time planar partial cage quality estimation directly from 2D images of object models and planar caging tools. One neural network, CageMaskNN, is used to identify caging tool locations that can support partial cages, while a second network that we call CageClearanceNN is trained to predict the quality of those configurations. A partial caging dataset of 3811 images of objects and more than 19 million caging tool configurations is used to train and evaluate these networks on previously unseen objects and caging tool configurations. Experiments show that evaluation of a given configuration on a GeForce GTX 1080 GPU takes less than 6 ms. Furthermore, an additional dataset focused on grasp-relevant configurations is curated and consists of 772 objects with 3.7 million configurations. We also use this dataset for 2D Cage acquisition on novel objects. We study how network performance depends on the datasets, as well as how to efficiently deal with unevenly distributed training data. In further analysis, we show that the evaluation pipeline can approximately identify connected regions of successful caging tool placements and we evaluate the continuity of the cage quality score evaluation along caging tool trajectories. Influence of disturbances is investigated and quantitative results are provided." @default.
- W3128210092 created "2021-02-15" @default.
- W3128210092 creator A5010206538 @default.
- W3128210092 creator A5018027629 @default.
- W3128210092 creator A5020344044 @default.
- W3128210092 creator A5020901032 @default.
- W3128210092 creator A5023792180 @default.
- W3128210092 creator A5050342525 @default.
- W3128210092 date "2021-02-04" @default.
- W3128210092 modified "2023-09-30" @default.
- W3128210092 title "Partial caging: a clearance-based definition, datasets, and deep learning" @default.
- W3128210092 cites W1503925285 @default.
- W3128210092 cites W1820657498 @default.
- W3128210092 cites W1981667747 @default.
- W3128210092 cites W1999156278 @default.
- W3128210092 cites W2000638494 @default.
- W3128210092 cites W2025848827 @default.
- W3128210092 cites W2028344184 @default.
- W3128210092 cites W2029909232 @default.
- W3128210092 cites W2041376653 @default.
- W3128210092 cites W2051725602 @default.
- W3128210092 cites W2064097161 @default.
- W3128210092 cites W2065736001 @default.
- W3128210092 cites W2068375174 @default.
- W3128210092 cites W2097117768 @default.
- W3128210092 cites W2113643677 @default.
- W3128210092 cites W2114306020 @default.
- W3128210092 cites W2136981968 @default.
- W3128210092 cites W2201912979 @default.
- W3128210092 cites W2289299303 @default.
- W3128210092 cites W2342204193 @default.
- W3128210092 cites W2485911221 @default.
- W3128210092 cites W2521265935 @default.
- W3128210092 cites W2550858736 @default.
- W3128210092 cites W2803196488 @default.
- W3128210092 cites W2962736495 @default.
- W3128210092 cites W2962899390 @default.
- W3128210092 cites W2963654160 @default.
- W3128210092 cites W2989259058 @default.
- W3128210092 cites W3003686473 @default.
- W3128210092 cites W3112422759 @default.
- W3128210092 doi "https://doi.org/10.1007/s10514-021-09969-6" @default.
- W3128210092 hasPublicationYear "2021" @default.
- W3128210092 type Work @default.
- W3128210092 sameAs 3128210092 @default.
- W3128210092 citedByCount "1" @default.
- W3128210092 countsByYear W31282100922023 @default.
- W3128210092 crossrefType "journal-article" @default.
- W3128210092 hasAuthorship W3128210092A5010206538 @default.
- W3128210092 hasAuthorship W3128210092A5018027629 @default.
- W3128210092 hasAuthorship W3128210092A5020344044 @default.
- W3128210092 hasAuthorship W3128210092A5020901032 @default.
- W3128210092 hasAuthorship W3128210092A5023792180 @default.
- W3128210092 hasAuthorship W3128210092A5050342525 @default.
- W3128210092 hasBestOaLocation W31282100921 @default.
- W3128210092 hasConcept C108583219 @default.
- W3128210092 hasConcept C111472728 @default.
- W3128210092 hasConcept C119857082 @default.
- W3128210092 hasConcept C124101348 @default.
- W3128210092 hasConcept C134306372 @default.
- W3128210092 hasConcept C138885662 @default.
- W3128210092 hasConcept C151201525 @default.
- W3128210092 hasConcept C153180895 @default.
- W3128210092 hasConcept C154945302 @default.
- W3128210092 hasConcept C171268870 @default.
- W3128210092 hasConcept C199360897 @default.
- W3128210092 hasConcept C2779530757 @default.
- W3128210092 hasConcept C2780801425 @default.
- W3128210092 hasConcept C2781238097 @default.
- W3128210092 hasConcept C33923547 @default.
- W3128210092 hasConcept C41008148 @default.
- W3128210092 hasConcept C43521106 @default.
- W3128210092 hasConcept C81363708 @default.
- W3128210092 hasConceptScore W3128210092C108583219 @default.
- W3128210092 hasConceptScore W3128210092C111472728 @default.
- W3128210092 hasConceptScore W3128210092C119857082 @default.
- W3128210092 hasConceptScore W3128210092C124101348 @default.
- W3128210092 hasConceptScore W3128210092C134306372 @default.
- W3128210092 hasConceptScore W3128210092C138885662 @default.
- W3128210092 hasConceptScore W3128210092C151201525 @default.
- W3128210092 hasConceptScore W3128210092C153180895 @default.
- W3128210092 hasConceptScore W3128210092C154945302 @default.
- W3128210092 hasConceptScore W3128210092C171268870 @default.
- W3128210092 hasConceptScore W3128210092C199360897 @default.
- W3128210092 hasConceptScore W3128210092C2779530757 @default.
- W3128210092 hasConceptScore W3128210092C2780801425 @default.
- W3128210092 hasConceptScore W3128210092C2781238097 @default.
- W3128210092 hasConceptScore W3128210092C33923547 @default.
- W3128210092 hasConceptScore W3128210092C41008148 @default.
- W3128210092 hasConceptScore W3128210092C43521106 @default.
- W3128210092 hasConceptScore W3128210092C81363708 @default.
- W3128210092 hasFunder F4320322327 @default.
- W3128210092 hasIssue "5" @default.
- W3128210092 hasLocation W31282100921 @default.
- W3128210092 hasLocation W31282100922 @default.
- W3128210092 hasOpenAccess W3128210092 @default.
- W3128210092 hasPrimaryLocation W31282100921 @default.
- W3128210092 hasRelatedWork W2337926734 @default.