Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128223864> ?p ?o ?g. }
- W3128223864 abstract "Background: As a class of membrane protein receptors, G protein-coupled receptors (GPCRs) are very important for cells to complete normal life function and have been proven to be a major drug target for widespread clinical application. Hence, it is of great significance to find GPCR targets that interact with drugs in the process of drug development. However, identifying the interaction of the GPCR–drug pairs by experimental methods is very expensive and time-consuming on a large scale. As more and more database about GPCR–drug pairs are opened, it is viable to develop machine learning models to accurately predict whether there is an interaction existing in a GPCR–drug pair. Methods: In this paper, the proposed model aims to improve the accuracy of predicting the interactions of GPCR–drug pairs. For GPCRs, the work extracts protein sequence features based on a novel bag-of-words (BOW) model improved with weighted Silhouette Coefficient and has been confirmed that it can extract more pattern information and limit the dimension of feature. For drug molecules, discrete wavelet transform (DWT) is used to extract features from the original molecular fingerprints. Subsequently, the above-mentioned two types of features are contacted, and SMOTE algorithm is selected to balance the training dataset. Then, artificial neural network is used to extract features further. Finally, a gradient boosting decision tree (GBDT) model is trained with the selected features. In this paper, the proposed model is named as BOW-GBDT. Results: D92M and Check390 are selected for testing BOW-GBDT. D92M is used for a cross-validation dataset which contains 635 interactive GPCR–drug pairs and 1,225 non-interactive pairs. Check390 is used for an independent test dataset which consists of 130 interactive GPCR–drug pairs and 260 non-interactive GPCR–drug pairs, and each element in Check390 cannot be found in D92M. According to the results, the proposed model has a better performance in generation ability compared with the existing machine learning models. Conclusion: The proposed predictor improves the accuracy of the interactions of GPCR–drug pairs. In order to facilitate more researchers to use the BOW-GBDT, the predictor has been settled into a brand-new server, which is available at http://www.jci-bioinfo.cn/bowgbdt ." @default.
- W3128223864 created "2021-02-15" @default.
- W3128223864 creator A5032406968 @default.
- W3128223864 creator A5033602780 @default.
- W3128223864 creator A5033821669 @default.
- W3128223864 creator A5061498444 @default.
- W3128223864 creator A5069962599 @default.
- W3128223864 date "2021-02-01" @default.
- W3128223864 modified "2023-10-11" @default.
- W3128223864 title "BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR–Drug Interaction Based on Wordbook Learning From Sequences" @default.
- W3128223864 cites W1498436455 @default.
- W3128223864 cites W1678356000 @default.
- W3128223864 cites W1977556410 @default.
- W3128223864 cites W1981385111 @default.
- W3128223864 cites W1987971958 @default.
- W3128223864 cites W1991181258 @default.
- W3128223864 cites W1991919669 @default.
- W3128223864 cites W2009313526 @default.
- W3128223864 cites W2025577942 @default.
- W3128223864 cites W2032790231 @default.
- W3128223864 cites W2042007894 @default.
- W3128223864 cites W2055125130 @default.
- W3128223864 cites W2069380892 @default.
- W3128223864 cites W2098740506 @default.
- W3128223864 cites W2100495367 @default.
- W3128223864 cites W2108069034 @default.
- W3128223864 cites W2124537004 @default.
- W3128223864 cites W2130695501 @default.
- W3128223864 cites W2134056721 @default.
- W3128223864 cites W2148143831 @default.
- W3128223864 cites W2153838454 @default.
- W3128223864 cites W2156909104 @default.
- W3128223864 cites W2161160262 @default.
- W3128223864 cites W2165674132 @default.
- W3128223864 cites W2169678694 @default.
- W3128223864 cites W218097150 @default.
- W3128223864 cites W2189308973 @default.
- W3128223864 cites W2230801863 @default.
- W3128223864 cites W2465768314 @default.
- W3128223864 cites W2608270353 @default.
- W3128223864 cites W2784083480 @default.
- W3128223864 cites W2795004691 @default.
- W3128223864 cites W2895798038 @default.
- W3128223864 cites W2907063321 @default.
- W3128223864 cites W2911617196 @default.
- W3128223864 cites W2911964244 @default.
- W3128223864 cites W2917923243 @default.
- W3128223864 cites W2936144882 @default.
- W3128223864 cites W2945755098 @default.
- W3128223864 cites W2947612926 @default.
- W3128223864 cites W2965878291 @default.
- W3128223864 cites W2977235223 @default.
- W3128223864 cites W2985856177 @default.
- W3128223864 cites W2999819730 @default.
- W3128223864 cites W3006176441 @default.
- W3128223864 cites W3008014363 @default.
- W3128223864 cites W3017388661 @default.
- W3128223864 cites W3032843171 @default.
- W3128223864 cites W3038447340 @default.
- W3128223864 cites W3092397780 @default.
- W3128223864 cites W4213345021 @default.
- W3128223864 cites W4254902779 @default.
- W3128223864 doi "https://doi.org/10.3389/fcell.2020.623858" @default.
- W3128223864 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7882597" @default.
- W3128223864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33598456" @default.
- W3128223864 hasPublicationYear "2021" @default.
- W3128223864 type Work @default.
- W3128223864 sameAs 3128223864 @default.
- W3128223864 citedByCount "13" @default.
- W3128223864 countsByYear W31282238642021 @default.
- W3128223864 countsByYear W31282238642022 @default.
- W3128223864 countsByYear W31282238642023 @default.
- W3128223864 crossrefType "journal-article" @default.
- W3128223864 hasAuthorship W3128223864A5032406968 @default.
- W3128223864 hasAuthorship W3128223864A5033602780 @default.
- W3128223864 hasAuthorship W3128223864A5033821669 @default.
- W3128223864 hasAuthorship W3128223864A5061498444 @default.
- W3128223864 hasAuthorship W3128223864A5069962599 @default.
- W3128223864 hasBestOaLocation W31282238641 @default.
- W3128223864 hasConcept C103697762 @default.
- W3128223864 hasConcept C119857082 @default.
- W3128223864 hasConcept C13672336 @default.
- W3128223864 hasConcept C153180895 @default.
- W3128223864 hasConcept C154945302 @default.
- W3128223864 hasConcept C21822782 @default.
- W3128223864 hasConcept C2777652565 @default.
- W3128223864 hasConcept C41008148 @default.
- W3128223864 hasConcept C50644808 @default.
- W3128223864 hasConcept C60644358 @default.
- W3128223864 hasConcept C70721500 @default.
- W3128223864 hasConcept C74187038 @default.
- W3128223864 hasConcept C76155785 @default.
- W3128223864 hasConcept C86803240 @default.
- W3128223864 hasConcept C95623464 @default.
- W3128223864 hasConceptScore W3128223864C103697762 @default.
- W3128223864 hasConceptScore W3128223864C119857082 @default.
- W3128223864 hasConceptScore W3128223864C13672336 @default.
- W3128223864 hasConceptScore W3128223864C153180895 @default.
- W3128223864 hasConceptScore W3128223864C154945302 @default.
- W3128223864 hasConceptScore W3128223864C21822782 @default.