Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128247890> ?p ?o ?g. }
- W3128247890 endingPage "107941" @default.
- W3128247890 startingPage "107941" @default.
- W3128247890 abstract "Advances in deep learning methods present new opportunities for fixing complex problems for an end to end learning. In terms of optimal design, seizure detection from EEG data has not been completely exploited by current models of deep learning. Most of the previous studies focus on handcrafted feature extraction for seizure detection. However, this method is not generalizable and needs major changes inside a new dataset for each new patient. In this paper, we proposed autonomously generalized retrospective and patient-specific hybrid models based on two types of feature extractors, namely Convolutional Neural Networks along with long short-term memory. The model automatically generates customized features to better classify ictal, interictal, and preictal segments for each patient and make it ideal for real-time. The procedure can be extended to any patient from Freiburg epileptic seizure database without the need for manual feature extraction. The method decomposed the EEG signals into time-based, frequency-based, and time–frequency-based features that were tested and compared in 21 subjects. Three forms of experiments including two binary classification problems and a ternary classification were performed to investigate the feasibility of the proposed approach. Using the time–frequency domain signals an average accuracy of 99.19%, 99.27%, and 95.04%, with frequency-domain signals, average accuracies of 96.64%, 95.75%, and 93.42% while with time-domain signals an average accuracy of 94.71%, 93.99%, and 90.53% was obtained. Our work shows that the combined use of CNNs and LSTMs by integrating spatial and temporal context along with time–frequency domain signals can significantly improve the accuracy of seizure detection." @default.
- W3128247890 created "2021-02-15" @default.
- W3128247890 creator A5032840064 @default.
- W3128247890 creator A5037676122 @default.
- W3128247890 creator A5057305454 @default.
- W3128247890 creator A5058313282 @default.
- W3128247890 date "2021-06-01" @default.
- W3128247890 modified "2023-09-27" @default.
- W3128247890 title "Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks" @default.
- W3128247890 cites W2016998251 @default.
- W3128247890 cites W2027927824 @default.
- W3128247890 cites W2067886306 @default.
- W3128247890 cites W2109889915 @default.
- W3128247890 cites W2293958150 @default.
- W3128247890 cites W2560897477 @default.
- W3128247890 cites W2575693046 @default.
- W3128247890 cites W2617938108 @default.
- W3128247890 cites W2742472784 @default.
- W3128247890 cites W2806806521 @default.
- W3128247890 cites W2896459226 @default.
- W3128247890 cites W2901730235 @default.
- W3128247890 cites W2904559787 @default.
- W3128247890 cites W2915149867 @default.
- W3128247890 cites W2926087227 @default.
- W3128247890 cites W2991240676 @default.
- W3128247890 cites W3014186485 @default.
- W3128247890 doi "https://doi.org/10.1016/j.apacoust.2021.107941" @default.
- W3128247890 hasPublicationYear "2021" @default.
- W3128247890 type Work @default.
- W3128247890 sameAs 3128247890 @default.
- W3128247890 citedByCount "43" @default.
- W3128247890 countsByYear W31282478902021 @default.
- W3128247890 countsByYear W31282478902022 @default.
- W3128247890 countsByYear W31282478902023 @default.
- W3128247890 crossrefType "journal-article" @default.
- W3128247890 hasAuthorship W3128247890A5032840064 @default.
- W3128247890 hasAuthorship W3128247890A5037676122 @default.
- W3128247890 hasAuthorship W3128247890A5057305454 @default.
- W3128247890 hasAuthorship W3128247890A5058313282 @default.
- W3128247890 hasConcept C108583219 @default.
- W3128247890 hasConcept C118552586 @default.
- W3128247890 hasConcept C120665830 @default.
- W3128247890 hasConcept C121332964 @default.
- W3128247890 hasConcept C12267149 @default.
- W3128247890 hasConcept C138885662 @default.
- W3128247890 hasConcept C147168706 @default.
- W3128247890 hasConcept C153180895 @default.
- W3128247890 hasConcept C154945302 @default.
- W3128247890 hasConcept C15744967 @default.
- W3128247890 hasConcept C17755696 @default.
- W3128247890 hasConcept C19118579 @default.
- W3128247890 hasConcept C192209626 @default.
- W3128247890 hasConcept C2776401178 @default.
- W3128247890 hasConcept C2779334592 @default.
- W3128247890 hasConcept C28490314 @default.
- W3128247890 hasConcept C31972630 @default.
- W3128247890 hasConcept C41008148 @default.
- W3128247890 hasConcept C41895202 @default.
- W3128247890 hasConcept C50644808 @default.
- W3128247890 hasConcept C522805319 @default.
- W3128247890 hasConcept C52622490 @default.
- W3128247890 hasConcept C59404180 @default.
- W3128247890 hasConcept C66905080 @default.
- W3128247890 hasConcept C81363708 @default.
- W3128247890 hasConceptScore W3128247890C108583219 @default.
- W3128247890 hasConceptScore W3128247890C118552586 @default.
- W3128247890 hasConceptScore W3128247890C120665830 @default.
- W3128247890 hasConceptScore W3128247890C121332964 @default.
- W3128247890 hasConceptScore W3128247890C12267149 @default.
- W3128247890 hasConceptScore W3128247890C138885662 @default.
- W3128247890 hasConceptScore W3128247890C147168706 @default.
- W3128247890 hasConceptScore W3128247890C153180895 @default.
- W3128247890 hasConceptScore W3128247890C154945302 @default.
- W3128247890 hasConceptScore W3128247890C15744967 @default.
- W3128247890 hasConceptScore W3128247890C17755696 @default.
- W3128247890 hasConceptScore W3128247890C19118579 @default.
- W3128247890 hasConceptScore W3128247890C192209626 @default.
- W3128247890 hasConceptScore W3128247890C2776401178 @default.
- W3128247890 hasConceptScore W3128247890C2779334592 @default.
- W3128247890 hasConceptScore W3128247890C28490314 @default.
- W3128247890 hasConceptScore W3128247890C31972630 @default.
- W3128247890 hasConceptScore W3128247890C41008148 @default.
- W3128247890 hasConceptScore W3128247890C41895202 @default.
- W3128247890 hasConceptScore W3128247890C50644808 @default.
- W3128247890 hasConceptScore W3128247890C522805319 @default.
- W3128247890 hasConceptScore W3128247890C52622490 @default.
- W3128247890 hasConceptScore W3128247890C59404180 @default.
- W3128247890 hasConceptScore W3128247890C66905080 @default.
- W3128247890 hasConceptScore W3128247890C81363708 @default.
- W3128247890 hasLocation W31282478901 @default.
- W3128247890 hasOpenAccess W3128247890 @default.
- W3128247890 hasPrimaryLocation W31282478901 @default.
- W3128247890 hasRelatedWork W2249570950 @default.
- W3128247890 hasRelatedWork W2279398222 @default.
- W3128247890 hasRelatedWork W2460369247 @default.
- W3128247890 hasRelatedWork W2544144554 @default.
- W3128247890 hasRelatedWork W2546942002 @default.
- W3128247890 hasRelatedWork W2951983144 @default.