Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128252107> ?p ?o ?g. }
- W3128252107 endingPage "1016" @default.
- W3128252107 startingPage "1003" @default.
- W3128252107 abstract "Recent 3-D scanning techniques can produce various kinds of digitized 3-D data. Most of these scanned data are in a format of unstructured point clouds. Such low-level representation of 3-D data usually contains only geometric properties (point positions), while lacking higher level structure cues, for example, feature lines. Feature lines can be defined as a visually prominent characteristic of the shape, including edges, ridges, and valley lines in multiple scales, which can support a lot of downstream applications, such as shape reconstruction and analysis. We present a two-phase algorithm for extracting line-type features on point clouds. To extract both large-scale and shallow feature lines, we first define a statistical metric to detect all potential feature points while immune to the noise to some extent. Then, for correctly reconstructing the feature lines from these identified coarse feature points, we introduce an anisotropic contracting scheme to force feature points lying on the underlying real feature lines. To illustrate the reliability of our method, various experiments have been conducted on both synthetic and raw data. Both visual and quantitative comparisons show that our method is robust to noise and can correctly extract multiscale feature lines. In addition, our method is generally applicable to robotic picking. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This article was motivated by the problem of the feature line extraction for real scanned point clouds. Feature lines, as one kind of the most important structure information, depict the basic shape of the real object in our life. Extracting this kind of shape features from the unstructured point clouds can facilitate a variety of downstream practical applications, such as product design, workpiece manufacturing, and robotic grasping. Existing approaches to detect features either heavily rely on differential quantities, which are sensitive to the noise, or need an elaborately designed local descriptor but fail to recognize small-scale features. These challenges motivate us to design a new approach aiming at extracting multiscale feature lines while keeping robustness to heavy noise. The technique developed in this work can produce high-quality feature points and feature lines, which would serve as higher level structural information and facilitate many applications. Additional applications in 6-degree-of-freedom (6-DoF) pose estimation demonstrate the potential of our method for robotic picking." @default.
- W3128252107 created "2021-02-15" @default.
- W3128252107 creator A5000619646 @default.
- W3128252107 creator A5035522695 @default.
- W3128252107 creator A5047305325 @default.
- W3128252107 creator A5048925301 @default.
- W3128252107 creator A5051555459 @default.
- W3128252107 creator A5071291471 @default.
- W3128252107 creator A5083549596 @default.
- W3128252107 date "2022-04-01" @default.
- W3128252107 modified "2023-10-17" @default.
- W3128252107 title "Multiscale Feature Line Extraction From Raw Point Clouds Based on Local Surface Variation and Anisotropic Contraction" @default.
- W3128252107 cites W1965722128 @default.
- W3128252107 cites W1970309137 @default.
- W3128252107 cites W1976450696 @default.
- W3128252107 cites W1985527876 @default.
- W3128252107 cites W2004402003 @default.
- W3128252107 cites W2036364699 @default.
- W3128252107 cites W2036668881 @default.
- W3128252107 cites W2050324381 @default.
- W3128252107 cites W2052789223 @default.
- W3128252107 cites W2055015270 @default.
- W3128252107 cites W2074178568 @default.
- W3128252107 cites W2075825658 @default.
- W3128252107 cites W2079965817 @default.
- W3128252107 cites W2085334966 @default.
- W3128252107 cites W2092785747 @default.
- W3128252107 cites W2097874565 @default.
- W3128252107 cites W2103790295 @default.
- W3128252107 cites W2107456087 @default.
- W3128252107 cites W2112477742 @default.
- W3128252107 cites W2121213023 @default.
- W3128252107 cites W2131723805 @default.
- W3128252107 cites W2147463666 @default.
- W3128252107 cites W2149458101 @default.
- W3128252107 cites W2149668583 @default.
- W3128252107 cites W2149887512 @default.
- W3128252107 cites W2150269384 @default.
- W3128252107 cites W2161168419 @default.
- W3128252107 cites W2163322877 @default.
- W3128252107 cites W2169611956 @default.
- W3128252107 cites W2287257515 @default.
- W3128252107 cites W2287328596 @default.
- W3128252107 cites W2338382397 @default.
- W3128252107 cites W2358992035 @default.
- W3128252107 cites W2467615243 @default.
- W3128252107 cites W2547693818 @default.
- W3128252107 cites W2594654837 @default.
- W3128252107 cites W2613097622 @default.
- W3128252107 cites W2621534427 @default.
- W3128252107 cites W2625131571 @default.
- W3128252107 cites W2884154111 @default.
- W3128252107 cites W2889095565 @default.
- W3128252107 cites W2889201873 @default.
- W3128252107 cites W2910733693 @default.
- W3128252107 cites W2947569699 @default.
- W3128252107 cites W2995798062 @default.
- W3128252107 cites W3024760004 @default.
- W3128252107 cites W3137466219 @default.
- W3128252107 cites W3151546419 @default.
- W3128252107 doi "https://doi.org/10.1109/tase.2021.3053006" @default.
- W3128252107 hasPublicationYear "2022" @default.
- W3128252107 type Work @default.
- W3128252107 sameAs 3128252107 @default.
- W3128252107 citedByCount "6" @default.
- W3128252107 countsByYear W31282521072022 @default.
- W3128252107 countsByYear W31282521072023 @default.
- W3128252107 crossrefType "journal-article" @default.
- W3128252107 hasAuthorship W3128252107A5000619646 @default.
- W3128252107 hasAuthorship W3128252107A5035522695 @default.
- W3128252107 hasAuthorship W3128252107A5047305325 @default.
- W3128252107 hasAuthorship W3128252107A5048925301 @default.
- W3128252107 hasAuthorship W3128252107A5051555459 @default.
- W3128252107 hasAuthorship W3128252107A5071291471 @default.
- W3128252107 hasAuthorship W3128252107A5083549596 @default.
- W3128252107 hasConcept C101814296 @default.
- W3128252107 hasConcept C104317684 @default.
- W3128252107 hasConcept C131979681 @default.
- W3128252107 hasConcept C138885662 @default.
- W3128252107 hasConcept C153180895 @default.
- W3128252107 hasConcept C154945302 @default.
- W3128252107 hasConcept C185592680 @default.
- W3128252107 hasConcept C198352243 @default.
- W3128252107 hasConcept C199360897 @default.
- W3128252107 hasConcept C2524010 @default.
- W3128252107 hasConcept C2776401178 @default.
- W3128252107 hasConcept C2777904410 @default.
- W3128252107 hasConcept C31972630 @default.
- W3128252107 hasConcept C33923547 @default.
- W3128252107 hasConcept C41008148 @default.
- W3128252107 hasConcept C41895202 @default.
- W3128252107 hasConcept C52622490 @default.
- W3128252107 hasConcept C55493867 @default.
- W3128252107 hasConcept C63479239 @default.
- W3128252107 hasConceptScore W3128252107C101814296 @default.
- W3128252107 hasConceptScore W3128252107C104317684 @default.
- W3128252107 hasConceptScore W3128252107C131979681 @default.
- W3128252107 hasConceptScore W3128252107C138885662 @default.