Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128254220> ?p ?o ?g. }
- W3128254220 endingPage "102258" @default.
- W3128254220 startingPage "102258" @default.
- W3128254220 abstract "Concrete carbonation is considered an important problem in both the Civil Engineering and Materials Science fields. Over time, the properties of concrete change because of the interaction between the material and the environment and, consequently, its durability is affected. Conventionally, concrete carbonation depth at a given time under steady-state conditions can reasonably be estimated using Fick's second law of diffusion. This study addresses the statistical modelling of the concrete carbonation phenomenon, using a large number of results (827 specimens or samples, i.e. 827 is the number of data concerning the measurement of the carbonation coefficient in concrete test specimens), collected in the literature. Artificial Neural Networks (ANNs) and Genetic Programming (GP) were the Soft Computing techniques used to predict the carbonation coefficient, as a function of a set of conditioning factors. These models allow the estimation of the carbonation coefficient and, accordingly, carbonation as a function of the variables considered statistically significant in explaining this phenomenon. The results obtained through Artificial Neural Networks and Genetic Programming were compared with those obtained through Multiple Linear Regression (MLR) (which has been previously used to model the carbonation coefficient of concrete). The results reveal that ANNs and GP models present a better performance when compared with MLR, being able to deal with the nonlinear influence of relative humidity on concrete carbonation, which was the main limitation of MLR in modelling the carbonation coefficient in previous study. ANNs are commonly seen as a black box; in this study, an attempt is made to address this issue through Knowledge Extraction (KE) from trained weights and biases. KE helps to understand the influence of each input on the output and the influences identified by the KE technique are in accordance with general knowledge." @default.
- W3128254220 created "2021-02-15" @default.
- W3128254220 creator A5008167284 @default.
- W3128254220 creator A5012785534 @default.
- W3128254220 creator A5058963574 @default.
- W3128254220 creator A5067023982 @default.
- W3128254220 creator A5072668617 @default.
- W3128254220 creator A5081720086 @default.
- W3128254220 date "2021-07-01" @default.
- W3128254220 modified "2023-10-16" @default.
- W3128254220 title "Predicting carbonation coefficient using Artificial neural networks and genetic programming" @default.
- W3128254220 cites W1596313547 @default.
- W3128254220 cites W1968185982 @default.
- W3128254220 cites W1975065783 @default.
- W3128254220 cites W2008447415 @default.
- W3128254220 cites W2012723378 @default.
- W3128254220 cites W2017282776 @default.
- W3128254220 cites W2020194153 @default.
- W3128254220 cites W2020236162 @default.
- W3128254220 cites W2026046132 @default.
- W3128254220 cites W2033226622 @default.
- W3128254220 cites W2037460094 @default.
- W3128254220 cites W2039636685 @default.
- W3128254220 cites W2043883726 @default.
- W3128254220 cites W2062313809 @default.
- W3128254220 cites W2066766534 @default.
- W3128254220 cites W2079020577 @default.
- W3128254220 cites W2082878346 @default.
- W3128254220 cites W2132487960 @default.
- W3128254220 cites W2156599380 @default.
- W3128254220 cites W2481391396 @default.
- W3128254220 cites W2585688741 @default.
- W3128254220 cites W2766985807 @default.
- W3128254220 cites W2792574750 @default.
- W3128254220 cites W2937699248 @default.
- W3128254220 cites W2946581404 @default.
- W3128254220 cites W2950283891 @default.
- W3128254220 cites W2993243199 @default.
- W3128254220 cites W3003522507 @default.
- W3128254220 cites W3017323153 @default.
- W3128254220 cites W3091034071 @default.
- W3128254220 doi "https://doi.org/10.1016/j.jobe.2021.102258" @default.
- W3128254220 hasPublicationYear "2021" @default.
- W3128254220 type Work @default.
- W3128254220 sameAs 3128254220 @default.
- W3128254220 citedByCount "11" @default.
- W3128254220 countsByYear W31282542202022 @default.
- W3128254220 countsByYear W31282542202023 @default.
- W3128254220 crossrefType "journal-article" @default.
- W3128254220 hasAuthorship W3128254220A5008167284 @default.
- W3128254220 hasAuthorship W3128254220A5012785534 @default.
- W3128254220 hasAuthorship W3128254220A5058963574 @default.
- W3128254220 hasAuthorship W3128254220A5067023982 @default.
- W3128254220 hasAuthorship W3128254220A5072668617 @default.
- W3128254220 hasAuthorship W3128254220A5081720086 @default.
- W3128254220 hasConcept C104304963 @default.
- W3128254220 hasConcept C110332635 @default.
- W3128254220 hasConcept C119857082 @default.
- W3128254220 hasConcept C120809312 @default.
- W3128254220 hasConcept C159985019 @default.
- W3128254220 hasConcept C192562407 @default.
- W3128254220 hasConcept C2780092901 @default.
- W3128254220 hasConcept C33923547 @default.
- W3128254220 hasConcept C39432304 @default.
- W3128254220 hasConcept C41008148 @default.
- W3128254220 hasConcept C48921125 @default.
- W3128254220 hasConcept C50644808 @default.
- W3128254220 hasConceptScore W3128254220C104304963 @default.
- W3128254220 hasConceptScore W3128254220C110332635 @default.
- W3128254220 hasConceptScore W3128254220C119857082 @default.
- W3128254220 hasConceptScore W3128254220C120809312 @default.
- W3128254220 hasConceptScore W3128254220C159985019 @default.
- W3128254220 hasConceptScore W3128254220C192562407 @default.
- W3128254220 hasConceptScore W3128254220C2780092901 @default.
- W3128254220 hasConceptScore W3128254220C33923547 @default.
- W3128254220 hasConceptScore W3128254220C39432304 @default.
- W3128254220 hasConceptScore W3128254220C41008148 @default.
- W3128254220 hasConceptScore W3128254220C48921125 @default.
- W3128254220 hasConceptScore W3128254220C50644808 @default.
- W3128254220 hasFunder F4320323424 @default.
- W3128254220 hasFunder F4320334779 @default.
- W3128254220 hasLocation W31282542201 @default.
- W3128254220 hasOpenAccess W3128254220 @default.
- W3128254220 hasPrimaryLocation W31282542201 @default.
- W3128254220 hasRelatedWork W195177417 @default.
- W3128254220 hasRelatedWork W1983425594 @default.
- W3128254220 hasRelatedWork W1998977112 @default.
- W3128254220 hasRelatedWork W2330565230 @default.
- W3128254220 hasRelatedWork W2347818927 @default.
- W3128254220 hasRelatedWork W2363789270 @default.
- W3128254220 hasRelatedWork W2366293555 @default.
- W3128254220 hasRelatedWork W2384344231 @default.
- W3128254220 hasRelatedWork W2385200445 @default.
- W3128254220 hasRelatedWork W4247859527 @default.
- W3128254220 hasVolume "39" @default.
- W3128254220 isParatext "false" @default.
- W3128254220 isRetracted "false" @default.
- W3128254220 magId "3128254220" @default.