Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128259432> ?p ?o ?g. }
- W3128259432 endingPage "661" @default.
- W3128259432 startingPage "661" @default.
- W3128259432 abstract "In recent years, advances in the development of whole-slide images have laid a foundation for the utilization of digital images in pathology. With the assistance of computer images analysis that automatically identifies tissue or cell types, they have greatly improved the histopathologic interpretation and diagnosis accuracy. In this paper, the Convolutional Neutral Network (CNN) has been adapted to predict and classify lymph node metastasis in breast cancer. Unlike traditional image cropping methods that are only suitable for large resolution images, we propose a novel data augmentation method named Random Center Cropping (RCC) to facilitate small resolution images. RCC enriches the datasets while retaining the image resolution and the center area of images. In addition, we reduce the downsampling scale of the network to further facilitate small resolution images better. Moreover, Attention and Feature Fusion (FF) mechanisms are employed to improve the semantic information of images. Experiments demonstrate that our methods boost performances of basic CNN architectures. And the best-performed method achieves an accuracy of 97.96% and an AUC of 99.68% on RPCam datasets, respectively." @default.
- W3128259432 created "2021-02-15" @default.
- W3128259432 creator A5015929794 @default.
- W3128259432 creator A5029014618 @default.
- W3128259432 creator A5040179504 @default.
- W3128259432 creator A5073540330 @default.
- W3128259432 creator A5084599239 @default.
- W3128259432 date "2021-02-07" @default.
- W3128259432 modified "2023-10-17" @default.
- W3128259432 title "Boosted EfficientNet: Detection of Lymph Node Metastases in Breast Cancer Using Convolutional Neural Networks" @default.
- W3128259432 cites W2004280628 @default.
- W3128259432 cites W2031489346 @default.
- W3128259432 cites W2103243046 @default.
- W3128259432 cites W2111574404 @default.
- W3128259432 cites W2115763357 @default.
- W3128259432 cites W2116760308 @default.
- W3128259432 cites W2131168375 @default.
- W3128259432 cites W2160397341 @default.
- W3128259432 cites W2165484640 @default.
- W3128259432 cites W2168809519 @default.
- W3128259432 cites W2330219538 @default.
- W3128259432 cites W2470965540 @default.
- W3128259432 cites W2533800772 @default.
- W3128259432 cites W2549267210 @default.
- W3128259432 cites W2588978745 @default.
- W3128259432 cites W2618999197 @default.
- W3128259432 cites W2754855139 @default.
- W3128259432 cites W2772723798 @default.
- W3128259432 cites W2788633781 @default.
- W3128259432 cites W2789818206 @default.
- W3128259432 cites W2809504579 @default.
- W3128259432 cites W2897434820 @default.
- W3128259432 cites W2913017330 @default.
- W3128259432 cites W2917435428 @default.
- W3128259432 cites W2919115771 @default.
- W3128259432 cites W2943370629 @default.
- W3128259432 cites W2947418219 @default.
- W3128259432 cites W2952481429 @default.
- W3128259432 cites W2952846726 @default.
- W3128259432 cites W2963420686 @default.
- W3128259432 cites W2963692668 @default.
- W3128259432 cites W2964166134 @default.
- W3128259432 cites W2964189045 @default.
- W3128259432 cites W2972838422 @default.
- W3128259432 cites W2985579239 @default.
- W3128259432 cites W2995173273 @default.
- W3128259432 cites W2996318747 @default.
- W3128259432 cites W3003903700 @default.
- W3128259432 cites W3012221628 @default.
- W3128259432 cites W3014041368 @default.
- W3128259432 cites W3019899894 @default.
- W3128259432 cites W3024963338 @default.
- W3128259432 cites W3025557640 @default.
- W3128259432 cites W3033710151 @default.
- W3128259432 cites W3036709462 @default.
- W3128259432 cites W3078697145 @default.
- W3128259432 cites W3080406710 @default.
- W3128259432 doi "https://doi.org/10.3390/cancers13040661" @default.
- W3128259432 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7915222" @default.
- W3128259432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33562232" @default.
- W3128259432 hasPublicationYear "2021" @default.
- W3128259432 type Work @default.
- W3128259432 sameAs 3128259432 @default.
- W3128259432 citedByCount "41" @default.
- W3128259432 countsByYear W31282594322021 @default.
- W3128259432 countsByYear W31282594322022 @default.
- W3128259432 countsByYear W31282594322023 @default.
- W3128259432 crossrefType "journal-article" @default.
- W3128259432 hasAuthorship W3128259432A5015929794 @default.
- W3128259432 hasAuthorship W3128259432A5029014618 @default.
- W3128259432 hasAuthorship W3128259432A5040179504 @default.
- W3128259432 hasAuthorship W3128259432A5073540330 @default.
- W3128259432 hasAuthorship W3128259432A5084599239 @default.
- W3128259432 hasBestOaLocation W31282594321 @default.
- W3128259432 hasConcept C110384440 @default.
- W3128259432 hasConcept C115961682 @default.
- W3128259432 hasConcept C121608353 @default.
- W3128259432 hasConcept C126322002 @default.
- W3128259432 hasConcept C138885662 @default.
- W3128259432 hasConcept C153180895 @default.
- W3128259432 hasConcept C154945302 @default.
- W3128259432 hasConcept C2776401178 @default.
- W3128259432 hasConcept C41008148 @default.
- W3128259432 hasConcept C41895202 @default.
- W3128259432 hasConcept C530470458 @default.
- W3128259432 hasConcept C71924100 @default.
- W3128259432 hasConcept C81363708 @default.
- W3128259432 hasConceptScore W3128259432C110384440 @default.
- W3128259432 hasConceptScore W3128259432C115961682 @default.
- W3128259432 hasConceptScore W3128259432C121608353 @default.
- W3128259432 hasConceptScore W3128259432C126322002 @default.
- W3128259432 hasConceptScore W3128259432C138885662 @default.
- W3128259432 hasConceptScore W3128259432C153180895 @default.
- W3128259432 hasConceptScore W3128259432C154945302 @default.
- W3128259432 hasConceptScore W3128259432C2776401178 @default.
- W3128259432 hasConceptScore W3128259432C41008148 @default.
- W3128259432 hasConceptScore W3128259432C41895202 @default.
- W3128259432 hasConceptScore W3128259432C530470458 @default.