Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128276280> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3128276280 endingPage "3168" @default.
- W3128276280 startingPage "3148" @default.
- W3128276280 abstract "Purpose This study aims to present development of genetic algorithm (GA)-based framework aimed at minimizing data center cooling energy consumption by optimizing the cooling set-points while ensuring that thermal management criteria are satisfied. Design/methodology/approach Three key components of the developed framework include an artificial neural network-based model for rapid temperature prediction (Athavale et al. , 2018a, 2019), a thermodynamic model for cooling energy estimation and GA-based optimization process. The static optimization framework informs the IT load distribution and cooling set-points in the data center room to simultaneously minimize cooling power consumption while maximizing IT load. The dynamic framework aims to minimize cooling power consumption in the data center during operation by determining most energy-efficient set-points for the cooling infrastructure while preventing temperature overshoots. Findings Results from static optimization framework indicate that among the three levels (room, rack and row) of IT load distribution granularity, Rack-level distribution consumes the least cooling power. A test case of 7.5 h implementing dynamic optimization demonstrated a reduction in cooling energy consumption between 21%–50% depending on current operation of data center. Research limitations/implications The temperature prediction model used being data-driven, is specific to the lab configuration considered in this study and cannot be directly applied to other scenarios. However, the overall framework can be generalized. Practical implications The developed framework can be implemented in data centers to optimize operation of cooling infrastructure and reduce energy consumption. Originality/value This paper presents a holistic framework for improving energy efficiency of data centers which is of critical value given the high (and increasing) energy consumption by these facilities." @default.
- W3128276280 created "2021-02-15" @default.
- W3128276280 creator A5003076382 @default.
- W3128276280 creator A5011736097 @default.
- W3128276280 creator A5042582169 @default.
- W3128276280 date "2021-01-18" @default.
- W3128276280 modified "2023-09-26" @default.
- W3128276280 title "Genetic algorithm based cooling energy optimization of data centers" @default.
- W3128276280 cites W1968535060 @default.
- W3128276280 cites W1983110499 @default.
- W3128276280 cites W2012843138 @default.
- W3128276280 cites W2021640400 @default.
- W3128276280 cites W2032632859 @default.
- W3128276280 cites W2918077105 @default.
- W3128276280 doi "https://doi.org/10.1108/hff-01-2020-0036" @default.
- W3128276280 hasPublicationYear "2021" @default.
- W3128276280 type Work @default.
- W3128276280 sameAs 3128276280 @default.
- W3128276280 citedByCount "0" @default.
- W3128276280 crossrefType "journal-article" @default.
- W3128276280 hasAuthorship W3128276280A5003076382 @default.
- W3128276280 hasAuthorship W3128276280A5011736097 @default.
- W3128276280 hasAuthorship W3128276280A5042582169 @default.
- W3128276280 hasConcept C105795698 @default.
- W3128276280 hasConcept C111919701 @default.
- W3128276280 hasConcept C119599485 @default.
- W3128276280 hasConcept C119857082 @default.
- W3128276280 hasConcept C121332964 @default.
- W3128276280 hasConcept C126255220 @default.
- W3128276280 hasConcept C127413603 @default.
- W3128276280 hasConcept C153740404 @default.
- W3128276280 hasConcept C163258240 @default.
- W3128276280 hasConcept C177264268 @default.
- W3128276280 hasConcept C177774035 @default.
- W3128276280 hasConcept C186370098 @default.
- W3128276280 hasConcept C199360897 @default.
- W3128276280 hasConcept C2780165032 @default.
- W3128276280 hasConcept C33923547 @default.
- W3128276280 hasConcept C41008148 @default.
- W3128276280 hasConcept C44154836 @default.
- W3128276280 hasConcept C62520636 @default.
- W3128276280 hasConcept C7694927 @default.
- W3128276280 hasConcept C78519656 @default.
- W3128276280 hasConcept C8880873 @default.
- W3128276280 hasConceptScore W3128276280C105795698 @default.
- W3128276280 hasConceptScore W3128276280C111919701 @default.
- W3128276280 hasConceptScore W3128276280C119599485 @default.
- W3128276280 hasConceptScore W3128276280C119857082 @default.
- W3128276280 hasConceptScore W3128276280C121332964 @default.
- W3128276280 hasConceptScore W3128276280C126255220 @default.
- W3128276280 hasConceptScore W3128276280C127413603 @default.
- W3128276280 hasConceptScore W3128276280C153740404 @default.
- W3128276280 hasConceptScore W3128276280C163258240 @default.
- W3128276280 hasConceptScore W3128276280C177264268 @default.
- W3128276280 hasConceptScore W3128276280C177774035 @default.
- W3128276280 hasConceptScore W3128276280C186370098 @default.
- W3128276280 hasConceptScore W3128276280C199360897 @default.
- W3128276280 hasConceptScore W3128276280C2780165032 @default.
- W3128276280 hasConceptScore W3128276280C33923547 @default.
- W3128276280 hasConceptScore W3128276280C41008148 @default.
- W3128276280 hasConceptScore W3128276280C44154836 @default.
- W3128276280 hasConceptScore W3128276280C62520636 @default.
- W3128276280 hasConceptScore W3128276280C7694927 @default.
- W3128276280 hasConceptScore W3128276280C78519656 @default.
- W3128276280 hasConceptScore W3128276280C8880873 @default.
- W3128276280 hasIssue "10" @default.
- W3128276280 hasLocation W31282762801 @default.
- W3128276280 hasOpenAccess W3128276280 @default.
- W3128276280 hasPrimaryLocation W31282762801 @default.
- W3128276280 hasRelatedWork W2037844790 @default.
- W3128276280 hasRelatedWork W2165967062 @default.
- W3128276280 hasRelatedWork W2371725958 @default.
- W3128276280 hasRelatedWork W2586092787 @default.
- W3128276280 hasRelatedWork W2794547316 @default.
- W3128276280 hasRelatedWork W2911534612 @default.
- W3128276280 hasRelatedWork W3084652717 @default.
- W3128276280 hasRelatedWork W4296019323 @default.
- W3128276280 hasRelatedWork W613488705 @default.
- W3128276280 hasRelatedWork W1728320412 @default.
- W3128276280 hasVolume "31" @default.
- W3128276280 isParatext "false" @default.
- W3128276280 isRetracted "false" @default.
- W3128276280 magId "3128276280" @default.
- W3128276280 workType "article" @default.