Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128284736> ?p ?o ?g. }
- W3128284736 endingPage "21938" @default.
- W3128284736 startingPage "21921" @default.
- W3128284736 abstract "Stress is considered by many studies to affect traffic safety, and many researchers have attempted to monitor the dynamics of driving stress. Previous research has relied excessively on the positive effects of psychological indicators to improve the accuracy of stress monitoring models. However, psychological data collection sensors have not been widely used in conventional vehicles, which makes it impossible to apply the results of that research to actual driving tasks on a daily basis, even if the accuracy is high. This study designs a real driving task to extract data and proposes a driver's driving stress monitoring model based on driving behaviour, driving environment, and route familiarity. The driving behaviour is described by the speed and acceleration of the vehicle, and the driving environment is quantified by a dilated residual networks (DRN) model thazt divides the video image from the full region into subregions according to the distribution of the driver's attention. Based on the psychological data and driver stress inventory (DSI) results, the study used a K-means 3D cluster analysis to obtain the evaluation method of driving stress and constructed an extreme gradient boosting (XGBoost) model to monitor driving stress. Comparisons of performance with other models show that the XGBoost model significantly outperforms the other three mainstream machine learning algorithms and exceeds most traditional models without the use of psychological data. The model's performance indicators, accuracy, sensitivity, and precision, reached 91.18%-93.25%, 84.13%-89.37%, and 90.25%-91.34%, respectively. The study also summarises the ranking of effects of different scene elements on driving stress for each visual field. The results could make it possible to apply stress monitoring on a large scale to real driving situations, providing urban designers with advice on how to reduce driver stress and directing their attention to those visual areas and visual scene elements that have a higher impact on driving stress and need improvement." @default.
- W3128284736 created "2021-02-15" @default.
- W3128284736 creator A5008158408 @default.
- W3128284736 creator A5011955983 @default.
- W3128284736 creator A5024031180 @default.
- W3128284736 creator A5083264355 @default.
- W3128284736 date "2021-01-01" @default.
- W3128284736 modified "2023-10-16" @default.
- W3128284736 title "XGBoost Algorithm-Based Monitoring Model for Urban Driving Stress: Combining Driving Behaviour, Driving Environment, and Route Familiarity" @default.
- W3128284736 cites W137170526 @default.
- W3128284736 cites W1515604382 @default.
- W3128284736 cites W1523029986 @default.
- W3128284736 cites W1970207571 @default.
- W3128284736 cites W1981904549 @default.
- W3128284736 cites W1983222358 @default.
- W3128284736 cites W1983561474 @default.
- W3128284736 cites W1984804236 @default.
- W3128284736 cites W1989639897 @default.
- W3128284736 cites W2000503364 @default.
- W3128284736 cites W2003540033 @default.
- W3128284736 cites W2007700028 @default.
- W3128284736 cites W2015420034 @default.
- W3128284736 cites W2018613899 @default.
- W3128284736 cites W2019338309 @default.
- W3128284736 cites W2021526351 @default.
- W3128284736 cites W2029717291 @default.
- W3128284736 cites W2043756605 @default.
- W3128284736 cites W2054872403 @default.
- W3128284736 cites W2055995231 @default.
- W3128284736 cites W2070017268 @default.
- W3128284736 cites W2073938609 @default.
- W3128284736 cites W2076937857 @default.
- W3128284736 cites W2077512056 @default.
- W3128284736 cites W2077762127 @default.
- W3128284736 cites W2079155753 @default.
- W3128284736 cites W2094620536 @default.
- W3128284736 cites W2131274108 @default.
- W3128284736 cites W2142567154 @default.
- W3128284736 cites W2164368909 @default.
- W3128284736 cites W2171801645 @default.
- W3128284736 cites W2175707895 @default.
- W3128284736 cites W2282066275 @default.
- W3128284736 cites W2591156018 @default.
- W3128284736 cites W2737258237 @default.
- W3128284736 cites W2747560075 @default.
- W3128284736 cites W2792625292 @default.
- W3128284736 cites W2809171572 @default.
- W3128284736 cites W2885282063 @default.
- W3128284736 cites W2891394872 @default.
- W3128284736 cites W2921376690 @default.
- W3128284736 cites W2954469285 @default.
- W3128284736 cites W2954948187 @default.
- W3128284736 cites W2962850830 @default.
- W3128284736 cites W2970879516 @default.
- W3128284736 cites W2976256431 @default.
- W3128284736 cites W2988225712 @default.
- W3128284736 cites W2992531633 @default.
- W3128284736 cites W2996705655 @default.
- W3128284736 cites W3000119951 @default.
- W3128284736 cites W3007732545 @default.
- W3128284736 cites W3092857817 @default.
- W3128284736 cites W4230691243 @default.
- W3128284736 doi "https://doi.org/10.1109/access.2021.3055551" @default.
- W3128284736 hasPublicationYear "2021" @default.
- W3128284736 type Work @default.
- W3128284736 sameAs 3128284736 @default.
- W3128284736 citedByCount "15" @default.
- W3128284736 countsByYear W31282847362021 @default.
- W3128284736 countsByYear W31282847362022 @default.
- W3128284736 countsByYear W31282847362023 @default.
- W3128284736 crossrefType "journal-article" @default.
- W3128284736 hasAuthorship W3128284736A5008158408 @default.
- W3128284736 hasAuthorship W3128284736A5011955983 @default.
- W3128284736 hasAuthorship W3128284736A5024031180 @default.
- W3128284736 hasAuthorship W3128284736A5083264355 @default.
- W3128284736 hasBestOaLocation W31282847361 @default.
- W3128284736 hasConcept C117896860 @default.
- W3128284736 hasConcept C119857082 @default.
- W3128284736 hasConcept C121332964 @default.
- W3128284736 hasConcept C138885662 @default.
- W3128284736 hasConcept C154945302 @default.
- W3128284736 hasConcept C189430467 @default.
- W3128284736 hasConcept C21036866 @default.
- W3128284736 hasConcept C2780689630 @default.
- W3128284736 hasConcept C41008148 @default.
- W3128284736 hasConcept C41895202 @default.
- W3128284736 hasConcept C44154836 @default.
- W3128284736 hasConcept C74650414 @default.
- W3128284736 hasConceptScore W3128284736C117896860 @default.
- W3128284736 hasConceptScore W3128284736C119857082 @default.
- W3128284736 hasConceptScore W3128284736C121332964 @default.
- W3128284736 hasConceptScore W3128284736C138885662 @default.
- W3128284736 hasConceptScore W3128284736C154945302 @default.
- W3128284736 hasConceptScore W3128284736C189430467 @default.
- W3128284736 hasConceptScore W3128284736C21036866 @default.
- W3128284736 hasConceptScore W3128284736C2780689630 @default.
- W3128284736 hasConceptScore W3128284736C41008148 @default.
- W3128284736 hasConceptScore W3128284736C41895202 @default.