Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128294791> ?p ?o ?g. }
- W3128294791 endingPage "486" @default.
- W3128294791 startingPage "471" @default.
- W3128294791 abstract "Purpose To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. Methods MRF using echo‐planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of and in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF and parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the and parametric maps, and the WM and GM probability maps. Results Deep learning‐based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for (deviations 6.0%). Conclusions MRF is a fast and robust tool for quantitative and mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning." @default.
- W3128294791 created "2021-02-15" @default.
- W3128294791 creator A5005613058 @default.
- W3128294791 creator A5010243880 @default.
- W3128294791 creator A5018727310 @default.
- W3128294791 creator A5018812303 @default.
- W3128294791 creator A5020136275 @default.
- W3128294791 creator A5020410104 @default.
- W3128294791 creator A5033925343 @default.
- W3128294791 creator A5039664732 @default.
- W3128294791 creator A5042415370 @default.
- W3128294791 creator A5054129493 @default.
- W3128294791 creator A5058226649 @default.
- W3128294791 creator A5068886430 @default.
- W3128294791 creator A5074124682 @default.
- W3128294791 creator A5087029161 @default.
- W3128294791 creator A5088499989 @default.
- W3128294791 date "2021-02-05" @default.
- W3128294791 modified "2023-10-17" @default.
- W3128294791 title "Accelerated white matter lesion analysis based on simultaneous <i>T</i><sub>1</sub> and <i>T</i><sub>2</sub><sup>∗</sup> quantification using magnetic resonance fingerprinting and deep learning" @default.
- W3128294791 cites W1524422590 @default.
- W3128294791 cites W1901129140 @default.
- W3128294791 cites W1973609741 @default.
- W3128294791 cites W1976006947 @default.
- W3128294791 cites W1979775925 @default.
- W3128294791 cites W2046372571 @default.
- W3128294791 cites W2056121606 @default.
- W3128294791 cites W2083232885 @default.
- W3128294791 cites W2102099319 @default.
- W3128294791 cites W2132140814 @default.
- W3128294791 cites W2144288697 @default.
- W3128294791 cites W2156717321 @default.
- W3128294791 cites W2246356655 @default.
- W3128294791 cites W2507707535 @default.
- W3128294791 cites W2508982726 @default.
- W3128294791 cites W2557368531 @default.
- W3128294791 cites W2566840690 @default.
- W3128294791 cites W2590234371 @default.
- W3128294791 cites W2594014149 @default.
- W3128294791 cites W2604388535 @default.
- W3128294791 cites W2624362663 @default.
- W3128294791 cites W2741247953 @default.
- W3128294791 cites W2747857845 @default.
- W3128294791 cites W2761545065 @default.
- W3128294791 cites W2768889754 @default.
- W3128294791 cites W2770360373 @default.
- W3128294791 cites W2795659077 @default.
- W3128294791 cites W2798456213 @default.
- W3128294791 cites W2804263814 @default.
- W3128294791 cites W2806139191 @default.
- W3128294791 cites W2889995282 @default.
- W3128294791 cites W2891116851 @default.
- W3128294791 cites W2903386059 @default.
- W3128294791 cites W2914314139 @default.
- W3128294791 cites W2921595773 @default.
- W3128294791 cites W2949631941 @default.
- W3128294791 cites W2950000029 @default.
- W3128294791 cites W2961175283 @default.
- W3128294791 cites W2964118901 @default.
- W3128294791 cites W2965291022 @default.
- W3128294791 cites W2970794632 @default.
- W3128294791 cites W2972976643 @default.
- W3128294791 cites W2980956888 @default.
- W3128294791 cites W2983286525 @default.
- W3128294791 cites W2984102002 @default.
- W3128294791 cites W2985900408 @default.
- W3128294791 cites W2986068754 @default.
- W3128294791 cites W2994844425 @default.
- W3128294791 cites W2996927594 @default.
- W3128294791 cites W2997869415 @default.
- W3128294791 cites W3099449442 @default.
- W3128294791 cites W3105282616 @default.
- W3128294791 doi "https://doi.org/10.1002/mrm.28688" @default.
- W3128294791 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33547656" @default.
- W3128294791 hasPublicationYear "2021" @default.
- W3128294791 type Work @default.
- W3128294791 sameAs 3128294791 @default.
- W3128294791 citedByCount "10" @default.
- W3128294791 countsByYear W31282947912021 @default.
- W3128294791 countsByYear W31282947912022 @default.
- W3128294791 countsByYear W31282947912023 @default.
- W3128294791 crossrefType "journal-article" @default.
- W3128294791 hasAuthorship W3128294791A5005613058 @default.
- W3128294791 hasAuthorship W3128294791A5010243880 @default.
- W3128294791 hasAuthorship W3128294791A5018727310 @default.
- W3128294791 hasAuthorship W3128294791A5018812303 @default.
- W3128294791 hasAuthorship W3128294791A5020136275 @default.
- W3128294791 hasAuthorship W3128294791A5020410104 @default.
- W3128294791 hasAuthorship W3128294791A5033925343 @default.
- W3128294791 hasAuthorship W3128294791A5039664732 @default.
- W3128294791 hasAuthorship W3128294791A5042415370 @default.
- W3128294791 hasAuthorship W3128294791A5054129493 @default.
- W3128294791 hasAuthorship W3128294791A5058226649 @default.
- W3128294791 hasAuthorship W3128294791A5068886430 @default.
- W3128294791 hasAuthorship W3128294791A5074124682 @default.
- W3128294791 hasAuthorship W3128294791A5087029161 @default.
- W3128294791 hasAuthorship W3128294791A5088499989 @default.
- W3128294791 hasBestOaLocation W31282947911 @default.