Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128313902> ?p ?o ?g. }
- W3128313902 abstract "IoT systems have been facing increasingly sophisticated technical problems due to the growing complexity of these systems and their fast deployment practices. Consequently, IoT managers have to judiciously detect failures (anomalies) in order to reduce their cyber risk and operational cost. While there is a rich literature on anomaly detection in many IoT-based systems, there is no existing work that documents the use of ML models for anomaly detection in digital agriculture and in smart manufacturing systems. These two application domains pose certain salient technical challenges. In agriculture the data is often sparse, due to the vast areas of farms and the requirement to keep the cost of monitoring low. Second, in both domains, there are multiple types of sensors with varying capabilities and costs. The sensor data characteristics change with the operating point of the environment or machines, such as, the RPM of the motor. The inferencing and the anomaly detection processes therefore have to be calibrated for the operating point. In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors. We evaluate the performance of ARIMA and LSTM models for predicting the time series of sensor data. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor. We then perform anomaly detection using the predicted sensor data. Taken together, we show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance." @default.
- W3128313902 created "2021-02-15" @default.
- W3128313902 creator A5007992878 @default.
- W3128313902 creator A5012603342 @default.
- W3128313902 creator A5012699875 @default.
- W3128313902 creator A5036282544 @default.
- W3128313902 creator A5047310442 @default.
- W3128313902 creator A5069716082 @default.
- W3128313902 date "2021-02-11" @default.
- W3128313902 modified "2023-09-27" @default.
- W3128313902 title "Anomaly Detection through Transfer Learning in Agriculture and Manufacturing IoT Systems." @default.
- W3128313902 cites W1527152867 @default.
- W3128313902 cites W2000987725 @default.
- W3128313902 cites W2061240327 @default.
- W3128313902 cites W2105103777 @default.
- W3128313902 cites W2111619626 @default.
- W3128313902 cites W2111730140 @default.
- W3128313902 cites W2116261113 @default.
- W3128313902 cites W2122646361 @default.
- W3128313902 cites W2132870739 @default.
- W3128313902 cites W2133590498 @default.
- W3128313902 cites W2136520403 @default.
- W3128313902 cites W2138332488 @default.
- W3128313902 cites W2144182447 @default.
- W3128313902 cites W2150847526 @default.
- W3128313902 cites W2161630727 @default.
- W3128313902 cites W2166353797 @default.
- W3128313902 cites W2178031510 @default.
- W3128313902 cites W2181523240 @default.
- W3128313902 cites W2317758986 @default.
- W3128313902 cites W2340923710 @default.
- W3128313902 cites W2403816530 @default.
- W3128313902 cites W2406349003 @default.
- W3128313902 cites W2515791790 @default.
- W3128313902 cites W2547945433 @default.
- W3128313902 cites W2553151007 @default.
- W3128313902 cites W2564018391 @default.
- W3128313902 cites W2571649827 @default.
- W3128313902 cites W2613310014 @default.
- W3128313902 cites W2734909543 @default.
- W3128313902 cites W2741660146 @default.
- W3128313902 cites W2763323349 @default.
- W3128313902 cites W2769988472 @default.
- W3128313902 cites W2782812883 @default.
- W3128313902 cites W2794550757 @default.
- W3128313902 cites W2803160576 @default.
- W3128313902 cites W2804522644 @default.
- W3128313902 cites W2944396970 @default.
- W3128313902 cites W2947831414 @default.
- W3128313902 cites W2981365036 @default.
- W3128313902 cites W2986786507 @default.
- W3128313902 cites W2990904702 @default.
- W3128313902 cites W3095378972 @default.
- W3128313902 cites W3150435615 @default.
- W3128313902 cites W3023071679 @default.
- W3128313902 hasPublicationYear "2021" @default.
- W3128313902 type Work @default.
- W3128313902 sameAs 3128313902 @default.
- W3128313902 citedByCount "0" @default.
- W3128313902 crossrefType "posted-content" @default.
- W3128313902 hasAuthorship W3128313902A5007992878 @default.
- W3128313902 hasAuthorship W3128313902A5012603342 @default.
- W3128313902 hasAuthorship W3128313902A5012699875 @default.
- W3128313902 hasAuthorship W3128313902A5036282544 @default.
- W3128313902 hasAuthorship W3128313902A5047310442 @default.
- W3128313902 hasAuthorship W3128313902A5069716082 @default.
- W3128313902 hasConcept C105339364 @default.
- W3128313902 hasConcept C111919701 @default.
- W3128313902 hasConcept C119857082 @default.
- W3128313902 hasConcept C124101348 @default.
- W3128313902 hasConcept C150899416 @default.
- W3128313902 hasConcept C151406439 @default.
- W3128313902 hasConcept C154945302 @default.
- W3128313902 hasConcept C24338571 @default.
- W3128313902 hasConcept C31258907 @default.
- W3128313902 hasConcept C31395832 @default.
- W3128313902 hasConcept C41008148 @default.
- W3128313902 hasConcept C739882 @default.
- W3128313902 hasConcept C79403827 @default.
- W3128313902 hasConceptScore W3128313902C105339364 @default.
- W3128313902 hasConceptScore W3128313902C111919701 @default.
- W3128313902 hasConceptScore W3128313902C119857082 @default.
- W3128313902 hasConceptScore W3128313902C124101348 @default.
- W3128313902 hasConceptScore W3128313902C150899416 @default.
- W3128313902 hasConceptScore W3128313902C151406439 @default.
- W3128313902 hasConceptScore W3128313902C154945302 @default.
- W3128313902 hasConceptScore W3128313902C24338571 @default.
- W3128313902 hasConceptScore W3128313902C31258907 @default.
- W3128313902 hasConceptScore W3128313902C31395832 @default.
- W3128313902 hasConceptScore W3128313902C41008148 @default.
- W3128313902 hasConceptScore W3128313902C739882 @default.
- W3128313902 hasConceptScore W3128313902C79403827 @default.
- W3128313902 hasLocation W31283139021 @default.
- W3128313902 hasOpenAccess W3128313902 @default.
- W3128313902 hasPrimaryLocation W31283139021 @default.
- W3128313902 hasRelatedWork W2497332262 @default.
- W3128313902 hasRelatedWork W2587181148 @default.
- W3128313902 hasRelatedWork W2724943486 @default.
- W3128313902 hasRelatedWork W2751861742 @default.
- W3128313902 hasRelatedWork W2781243672 @default.