Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128318324> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3128318324 endingPage "35" @default.
- W3128318324 startingPage "27" @default.
- W3128318324 abstract "Thin sheets of Al/Cu dissimilar materials are overlap welded for the electrical connection of secondary battery electrodes by laser welding. The weld penetration depth is an important joint quality to ensure strength and electrical conductance. It is difficult to predict the penetration depth using analytical methods because of the high laser reflection and small thickness of the base materials. Several machine learning algorithms were investigated to develop regression models for the penetration depth. The models included linear regression, decision tree, supported vector regression, Gaussian process regression, and decision tree ensemble model groups. The regression models with high degrees of freedom showed excellent mean absolute percentage errors (MAPE) and coefficients of determination (R2). In particular, the Gaussian process regression model with exponential kernels had an MAPE of 0.2% and an R2 of unity. Key words: Machine learning, Laser welding, Penetration depth, Aluminum, Copper, Overlap joint" @default.
- W3128318324 created "2021-02-15" @default.
- W3128318324 creator A5002933586 @default.
- W3128318324 creator A5011837982 @default.
- W3128318324 creator A5026298720 @default.
- W3128318324 creator A5057504121 @default.
- W3128318324 creator A5063859289 @default.
- W3128318324 creator A5077430922 @default.
- W3128318324 date "2021-02-28" @default.
- W3128318324 modified "2023-10-03" @default.
- W3128318324 title "Modeling of Laser Welds Using Machine Learning Algorithm Part I: Penetration Depth for Laser Overlap Al/Cu Dissimilar Metal Welds" @default.
- W3128318324 cites W1977109872 @default.
- W3128318324 cites W2000310835 @default.
- W3128318324 cites W2020472514 @default.
- W3128318324 cites W2022461361 @default.
- W3128318324 cites W2062449123 @default.
- W3128318324 cites W2070451648 @default.
- W3128318324 cites W2077917833 @default.
- W3128318324 cites W2087698459 @default.
- W3128318324 cites W2089022378 @default.
- W3128318324 cites W2089755190 @default.
- W3128318324 cites W2125283600 @default.
- W3128318324 cites W2807812876 @default.
- W3128318324 cites W2894258623 @default.
- W3128318324 cites W2955992302 @default.
- W3128318324 cites W3127976118 @default.
- W3128318324 cites W3128212205 @default.
- W3128318324 doi "https://doi.org/10.5781/jwj.2021.39.1.3" @default.
- W3128318324 hasPublicationYear "2021" @default.
- W3128318324 type Work @default.
- W3128318324 sameAs 3128318324 @default.
- W3128318324 citedByCount "7" @default.
- W3128318324 countsByYear W31283183242021 @default.
- W3128318324 countsByYear W31283183242022 @default.
- W3128318324 countsByYear W31283183242023 @default.
- W3128318324 crossrefType "journal-article" @default.
- W3128318324 hasAuthorship W3128318324A5002933586 @default.
- W3128318324 hasAuthorship W3128318324A5011837982 @default.
- W3128318324 hasAuthorship W3128318324A5026298720 @default.
- W3128318324 hasAuthorship W3128318324A5057504121 @default.
- W3128318324 hasAuthorship W3128318324A5063859289 @default.
- W3128318324 hasAuthorship W3128318324A5077430922 @default.
- W3128318324 hasBestOaLocation W31283183241 @default.
- W3128318324 hasConcept C119857082 @default.
- W3128318324 hasConcept C120665830 @default.
- W3128318324 hasConcept C121332964 @default.
- W3128318324 hasConcept C12267149 @default.
- W3128318324 hasConcept C152877465 @default.
- W3128318324 hasConcept C159985019 @default.
- W3128318324 hasConcept C192562407 @default.
- W3128318324 hasConcept C193493375 @default.
- W3128318324 hasConcept C19474535 @default.
- W3128318324 hasConcept C41008148 @default.
- W3128318324 hasConcept C48921125 @default.
- W3128318324 hasConcept C520434653 @default.
- W3128318324 hasConcept C81692654 @default.
- W3128318324 hasConcept C89344249 @default.
- W3128318324 hasConceptScore W3128318324C119857082 @default.
- W3128318324 hasConceptScore W3128318324C120665830 @default.
- W3128318324 hasConceptScore W3128318324C121332964 @default.
- W3128318324 hasConceptScore W3128318324C12267149 @default.
- W3128318324 hasConceptScore W3128318324C152877465 @default.
- W3128318324 hasConceptScore W3128318324C159985019 @default.
- W3128318324 hasConceptScore W3128318324C192562407 @default.
- W3128318324 hasConceptScore W3128318324C193493375 @default.
- W3128318324 hasConceptScore W3128318324C19474535 @default.
- W3128318324 hasConceptScore W3128318324C41008148 @default.
- W3128318324 hasConceptScore W3128318324C48921125 @default.
- W3128318324 hasConceptScore W3128318324C520434653 @default.
- W3128318324 hasConceptScore W3128318324C81692654 @default.
- W3128318324 hasConceptScore W3128318324C89344249 @default.
- W3128318324 hasFunder F4320321681 @default.
- W3128318324 hasIssue "1" @default.
- W3128318324 hasLocation W31283183241 @default.
- W3128318324 hasOpenAccess W3128318324 @default.
- W3128318324 hasPrimaryLocation W31283183241 @default.
- W3128318324 hasRelatedWork W1573878970 @default.
- W3128318324 hasRelatedWork W1968062154 @default.
- W3128318324 hasRelatedWork W2059208592 @default.
- W3128318324 hasRelatedWork W2074648163 @default.
- W3128318324 hasRelatedWork W2356488302 @default.
- W3128318324 hasRelatedWork W2361665031 @default.
- W3128318324 hasRelatedWork W2368454493 @default.
- W3128318324 hasRelatedWork W2895805396 @default.
- W3128318324 hasRelatedWork W2896484297 @default.
- W3128318324 hasRelatedWork W3112365452 @default.
- W3128318324 hasVolume "39" @default.
- W3128318324 isParatext "false" @default.
- W3128318324 isRetracted "false" @default.
- W3128318324 magId "3128318324" @default.
- W3128318324 workType "article" @default.