Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128335983> ?p ?o ?g. }
- W3128335983 endingPage "145061" @default.
- W3128335983 startingPage "145061" @default.
- W3128335983 abstract "Few studies have addressed how the diversity of basal resources change with stream regulation and the potential consequences on river biota. We sampled invertebrates above and below a series of dams, over two years, at both downwelling and upwelling zones. In each zone, we recorded the daily temperature and flow variations, estimated the algal development, measured the available resources, and analysed carbon and nitrogen stable isotope compositions of the invertebrate community. The number of hydrological pulses were typically higher below the dams than above the dams especially during high-flow periods whereas the groundwater outlets had minor effects on invertebrate assemblages. Invertebrate abundance, richness and diversity tended to decrease below the dams. Co-inertia analysis showed that flow and temperature variations, and eutrophication explained most of the variance in the invertebrate assemblages, which comprised a higher number of resilient taxa below than above the dams. The proportions of pesticide-sensitive invertebrates were lower below the dams and ovoviviparous and more generalist taxa were prominent. We did not observe the expected CPOM decrease and FPOM increase downstream. Accordingly, the proportions of each functional feeding group were remarkably similar above and below the dams despite the long distance between the sectors (>100 kms). The diversity of basal resources used within assemblages progressively increased downstream above dams. In contrast, the diversity of resources used by organisms below the dams decreased from upstream to downstream suggesting a significant influence of flow regulation on aquatic food webs. Finally, the shorter trophic chains for the invertebrate assemblages below the dams suggests that the effects of stream regulation and eutrophication induced a simplification of food webs. To our knowledge, this study is the first to connect taxonomic and functional trait changes in response to multiple stressors with the associated modifications in isotopic niches within aquatic invertebrate assemblages. Understanding how stream regulation and associated anthropogenic pressures act on aquatic assemblages and trophic niches is necessary to guide management actions. We aimed to investigate the functional responses (traits and trophic niches) of aquatic invertebrate assemblages to stream regulation and eutrophication. We used univariate and multivariate analyses to compare the invertebrate assemblages above and below the dams and to assess the contributions of hydrology (including groundwater supplies to the river), temperature and eutrophication to the variability in the composition of invertebrate assemblages. We also considered the relative utilization of a selected set of traits describing invertebrate resilience, resistance and specialization to address the potential functional effects of stream regulation on invertebrate assemblages. Finally, carbon and nitrogen isotope analyses allowed us to characterize the length and width of invertebrate assemblage food webs as related to the availability and diversity of basal resources. Invertebrate abundance and richness generally decreased below the dams, with the highest impacts on insect taxa. Co-inertia analysis showed that stream regulation and eutrophication were main drivers of the aquatic invertebrate assemblages. The analysis separated the sites above and below the dams according to flow and temperature variation, whereas eutrophication appeared as a secondary stressor that separated the sites within each sector. Furthermore, the series of dams resulted in (i) a higher proportion of resilient (e.g., multivoltine) and resistant (ovoviviparous) taxa and a majority of generalists in assemblages below dams, (ii) an impact on the classical dynamics of CPOM (decrease) and FPOM (increase) sources from upstream to downstream, and (iii) a reduction in the diversity of resource use and in the trophic chain length of invertebrate assemblages below dams. The cooler and less oxygenated upwelling zones had lower invertebrate abundance; however, contrary to our expectation, the variation in the groundwater supply did not affect the composition of epigean invertebrate assemblages. This study provides insights about the impacts of flow regime alteration and eutrophication on food webs that may have been caused by regulation of permanent streams. To our knowledge, this is the first to connect taxonomic and functional trait changes in response to multiple stressors with the associated modifications in energy fluxes in aquatic invertebrate assemblages. This study suggests that bed stability, which is associated with a reduction in channel mobility below the dams and with moderate eutrophication, may provide the shelter and resources that can locally favour invertebrate assemblage dynamics and lessen the effects of flow regulation. In addition, the study suggests that the biological trait-based approach and isotope analysis are complementary approaches for addressing ecosystem functioning. The relative utilization of traits indicates the functional potential of aquatic invertebrate assemblages to face multiple stressors whereas isotope analysis is an expression of the actual effect of the stressors on the trophic structure of aquatic invertebrate assemblages." @default.
- W3128335983 created "2021-02-15" @default.
- W3128335983 creator A5009894352 @default.
- W3128335983 creator A5035423466 @default.
- W3128335983 creator A5048502608 @default.
- W3128335983 creator A5056318101 @default.
- W3128335983 creator A5077454217 @default.
- W3128335983 creator A5085223862 @default.
- W3128335983 date "2021-06-01" @default.
- W3128335983 modified "2023-10-16" @default.
- W3128335983 title "Multiple stressors shape invertebrate assemblages and reduce their trophic niche: A case study in a regulated stream" @default.
- W3128335983 cites W1265683376 @default.
- W3128335983 cites W129305155 @default.
- W3128335983 cites W1555935903 @default.
- W3128335983 cites W1580043097 @default.
- W3128335983 cites W1757210433 @default.
- W3128335983 cites W1951724000 @default.
- W3128335983 cites W1960923642 @default.
- W3128335983 cites W1972588010 @default.
- W3128335983 cites W1973967941 @default.
- W3128335983 cites W1974322213 @default.
- W3128335983 cites W1986931430 @default.
- W3128335983 cites W1987650700 @default.
- W3128335983 cites W1988091302 @default.
- W3128335983 cites W2005090836 @default.
- W3128335983 cites W2005405525 @default.
- W3128335983 cites W2007269173 @default.
- W3128335983 cites W2008019499 @default.
- W3128335983 cites W2008942529 @default.
- W3128335983 cites W2010715096 @default.
- W3128335983 cites W2014452120 @default.
- W3128335983 cites W2016654357 @default.
- W3128335983 cites W2017645312 @default.
- W3128335983 cites W2025415269 @default.
- W3128335983 cites W2029032412 @default.
- W3128335983 cites W2030894508 @default.
- W3128335983 cites W2040917554 @default.
- W3128335983 cites W2043853557 @default.
- W3128335983 cites W2044115927 @default.
- W3128335983 cites W2051710627 @default.
- W3128335983 cites W2053696872 @default.
- W3128335983 cites W2057930778 @default.
- W3128335983 cites W2062029526 @default.
- W3128335983 cites W2066230046 @default.
- W3128335983 cites W2069394810 @default.
- W3128335983 cites W2071961984 @default.
- W3128335983 cites W2076616438 @default.
- W3128335983 cites W2089821411 @default.
- W3128335983 cites W2093124572 @default.
- W3128335983 cites W2093575882 @default.
- W3128335983 cites W2094912447 @default.
- W3128335983 cites W2095710758 @default.
- W3128335983 cites W2096401691 @default.
- W3128335983 cites W2097432774 @default.
- W3128335983 cites W2099692311 @default.
- W3128335983 cites W2110815981 @default.
- W3128335983 cites W2114599288 @default.
- W3128335983 cites W2116544104 @default.
- W3128335983 cites W2121041751 @default.
- W3128335983 cites W2128846380 @default.
- W3128335983 cites W2131016412 @default.
- W3128335983 cites W2134585154 @default.
- W3128335983 cites W2136831558 @default.
- W3128335983 cites W2141464766 @default.
- W3128335983 cites W2146317308 @default.
- W3128335983 cites W2148262561 @default.
- W3128335983 cites W2148361960 @default.
- W3128335983 cites W2151414979 @default.
- W3128335983 cites W2156920418 @default.
- W3128335983 cites W2165384723 @default.
- W3128335983 cites W2168284964 @default.
- W3128335983 cites W2169900471 @default.
- W3128335983 cites W2176822047 @default.
- W3128335983 cites W2331838569 @default.
- W3128335983 cites W2412677115 @default.
- W3128335983 cites W242366677 @default.
- W3128335983 cites W2511582741 @default.
- W3128335983 cites W2548222125 @default.
- W3128335983 cites W2609364227 @default.
- W3128335983 cites W2609390102 @default.
- W3128335983 cites W2776006765 @default.
- W3128335983 cites W2778152910 @default.
- W3128335983 cites W2790603247 @default.
- W3128335983 cites W2883390879 @default.
- W3128335983 cites W2892396799 @default.
- W3128335983 cites W2901967118 @default.
- W3128335983 cites W2956732426 @default.
- W3128335983 cites W2966208162 @default.
- W3128335983 cites W29779864 @default.
- W3128335983 cites W2986678703 @default.
- W3128335983 cites W2990098083 @default.
- W3128335983 cites W3000310372 @default.
- W3128335983 cites W3007763856 @default.
- W3128335983 cites W4237523714 @default.
- W3128335983 doi "https://doi.org/10.1016/j.scitotenv.2021.145061" @default.
- W3128335983 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33940713" @default.
- W3128335983 hasPublicationYear "2021" @default.
- W3128335983 type Work @default.