Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128369420> ?p ?o ?g. }
- W3128369420 endingPage "107613" @default.
- W3128369420 startingPage "107613" @default.
- W3128369420 abstract "We consider the closed subspace of ℓ∞ generated by c0 and the characteristic functions of elements of an uncountable, almost disjoint family A of infinite subsets of N. This Banach space has the form C0(KA) for a locally compact Hausdorff space KA that is known under many names, including Ψ-space and Isbell–Mrówka space. We construct an uncountable, almost disjoint family A such that the algebra of all bounded linear operators on C0(KA) is as small as possible in the precise sense that every bounded linear operator on C0(KA) is the sum of a scalar multiple of the identity and an operator that factors through c0 (which in this case is equivalent to having separable range). This implies that C0(KA) has the fewest possible decompositions: whenever C0(KA) is written as the direct sum of two infinite-dimensional Banach spaces X and Y, either X is isomorphic to C0(KA) and Y to c0, or vice versa. These results improve previous work of the first named author in which an extra set-theoretic hypothesis was required. We also discuss the consequences of these results for the algebra of all bounded linear operators on our Banach space C0(KA) concerning the lattice of closed ideals, characters and automatic continuity of homomorphisms. To exploit the perfect set property for Borel sets as in the classical construction of an almost disjoint family by Mrówka, we need to deal with N×N matrices rather than with the usual partitioners of an almost disjoint family. This noncommutative setting requires new ideas inspired by the theory of compact and weakly compact operators and the use of an extraction principle due to van Engelen, Kunen and Miller concerning Borel subsets of the square." @default.
- W3128369420 created "2021-02-15" @default.
- W3128369420 creator A5019291245 @default.
- W3128369420 creator A5048851482 @default.
- W3128369420 date "2021-04-01" @default.
- W3128369420 modified "2023-09-30" @default.
- W3128369420 title "A Banach space induced by an almost disjoint family, admitting only few operators and decompositions" @default.
- W3128369420 cites W1025614405 @default.
- W3128369420 cites W1503803808 @default.
- W3128369420 cites W1539172509 @default.
- W3128369420 cites W1769208762 @default.
- W3128369420 cites W1964496009 @default.
- W3128369420 cites W1981268206 @default.
- W3128369420 cites W2000069471 @default.
- W3128369420 cites W2013081583 @default.
- W3128369420 cites W2015263890 @default.
- W3128369420 cites W2021001065 @default.
- W3128369420 cites W2024870381 @default.
- W3128369420 cites W2026749675 @default.
- W3128369420 cites W2029179659 @default.
- W3128369420 cites W2034360154 @default.
- W3128369420 cites W2037833993 @default.
- W3128369420 cites W2042429735 @default.
- W3128369420 cites W2068600940 @default.
- W3128369420 cites W2074963985 @default.
- W3128369420 cites W2077828928 @default.
- W3128369420 cites W2084273168 @default.
- W3128369420 cites W2091440327 @default.
- W3128369420 cites W2092713038 @default.
- W3128369420 cites W2097649873 @default.
- W3128369420 cites W2137140554 @default.
- W3128369420 cites W2138668114 @default.
- W3128369420 cites W2155400132 @default.
- W3128369420 cites W2166974959 @default.
- W3128369420 cites W2169837666 @default.
- W3128369420 cites W2172003246 @default.
- W3128369420 cites W2172160031 @default.
- W3128369420 cites W226912456 @default.
- W3128369420 cites W2313068108 @default.
- W3128369420 cites W2768061035 @default.
- W3128369420 cites W2963040433 @default.
- W3128369420 cites W2963388344 @default.
- W3128369420 cites W2963521004 @default.
- W3128369420 cites W3099319063 @default.
- W3128369420 cites W3102453813 @default.
- W3128369420 cites W4255274051 @default.
- W3128369420 cites W595704803 @default.
- W3128369420 doi "https://doi.org/10.1016/j.aim.2021.107613" @default.
- W3128369420 hasPublicationYear "2021" @default.
- W3128369420 type Work @default.
- W3128369420 sameAs 3128369420 @default.
- W3128369420 citedByCount "6" @default.
- W3128369420 countsByYear W31283694202021 @default.
- W3128369420 countsByYear W31283694202022 @default.
- W3128369420 countsByYear W31283694202023 @default.
- W3128369420 crossrefType "journal-article" @default.
- W3128369420 hasAuthorship W3128369420A5019291245 @default.
- W3128369420 hasAuthorship W3128369420A5048851482 @default.
- W3128369420 hasBestOaLocation W31283694202 @default.
- W3128369420 hasConcept C110729354 @default.
- W3128369420 hasConcept C114614502 @default.
- W3128369420 hasConcept C118615104 @default.
- W3128369420 hasConcept C132954091 @default.
- W3128369420 hasConcept C134306372 @default.
- W3128369420 hasConcept C142399903 @default.
- W3128369420 hasConcept C175454919 @default.
- W3128369420 hasConcept C202444582 @default.
- W3128369420 hasConcept C33923547 @default.
- W3128369420 hasConcept C34388435 @default.
- W3128369420 hasConcept C45340560 @default.
- W3128369420 hasConcept C70710897 @default.
- W3128369420 hasConceptScore W3128369420C110729354 @default.
- W3128369420 hasConceptScore W3128369420C114614502 @default.
- W3128369420 hasConceptScore W3128369420C118615104 @default.
- W3128369420 hasConceptScore W3128369420C132954091 @default.
- W3128369420 hasConceptScore W3128369420C134306372 @default.
- W3128369420 hasConceptScore W3128369420C142399903 @default.
- W3128369420 hasConceptScore W3128369420C175454919 @default.
- W3128369420 hasConceptScore W3128369420C202444582 @default.
- W3128369420 hasConceptScore W3128369420C33923547 @default.
- W3128369420 hasConceptScore W3128369420C34388435 @default.
- W3128369420 hasConceptScore W3128369420C45340560 @default.
- W3128369420 hasConceptScore W3128369420C70710897 @default.
- W3128369420 hasLocation W31283694201 @default.
- W3128369420 hasLocation W31283694202 @default.
- W3128369420 hasLocation W31283694203 @default.
- W3128369420 hasOpenAccess W3128369420 @default.
- W3128369420 hasPrimaryLocation W31283694201 @default.
- W3128369420 hasRelatedWork W108917217 @default.
- W3128369420 hasRelatedWork W1974112504 @default.
- W3128369420 hasRelatedWork W2016492928 @default.
- W3128369420 hasRelatedWork W2036012028 @default.
- W3128369420 hasRelatedWork W2086733822 @default.
- W3128369420 hasRelatedWork W2117602251 @default.
- W3128369420 hasRelatedWork W2166518045 @default.
- W3128369420 hasRelatedWork W2964151997 @default.
- W3128369420 hasRelatedWork W2977286665 @default.
- W3128369420 hasRelatedWork W977859904 @default.