Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128386968> ?p ?o ?g. }
- W3128386968 endingPage "20201101" @default.
- W3128386968 startingPage "20201101" @default.
- W3128386968 abstract "Left-ventricular (LV) strain measurements with the Displacement Encoding with Stimulated Echoes (DENSE) MRI sequence provide accurate estimates of cardiotoxicity damage related to chemotherapy for breast cancer. This study investigated an automated and supervised deep convolutional neural network (DCNN) model for LV chamber quantification before strain analysis in DENSE images.The DeepLabV3 +DCNN with three versions of ResNet-50 backbone was designed to conduct chamber quantification on 42 female breast cancer data sets. The convolutional layers in the three ResNet-50 backbones were varied as non-atrous, atrous and modified, atrous with accuracy improvements like using Laplacian of Gaussian filters. Parameters such as LV end-diastolic diameter (LVEDD) and ejection fraction (LVEF) were quantified, and myocardial strains analyzed with the Radial Point Interpolation Method (RPIM). Myocardial classification was validated with the performance metrics of accuracy, Dice, average perpendicular distance (APD) and others. Repeated measures ANOVA and intraclass correlation (ICC) with Cronbach's α (C-Alpha) tests were conducted between the three DCNNs and a vendor tool on chamber quantification and myocardial strain analysis.Validation results in the same test-set for myocardial classification were accuracy = 97%, Dice = 0.92, APD = 1.2 mm with the modified ResNet-50, and accuracy = 95%, Dice = 0.90, APD = 1.7 mm with the atrous ResNet-50. The ICC results between the modified ResNet-50, atrous ResNet-50 and vendor-tool were C-Alpha = 0.97 for LVEF (55±7%, 54±7%, 54±7%, p = 0.6), and C-Alpha = 0.87 for LVEDD (4.6 ± 0.3 cm, 4.6 ± 0.3 cm, 4.6 ± 0.4 cm, p = 0.7).Similar performance metrics and equivalent parameters obtained from comparisons between the atrous networks and vendor tool show that segmentation with the modified, atrous DCNN is applicable for automated LV chamber quantification and subsequent strain analysis in cardiotoxicity.A novel deep-learning technique for segmenting DENSE images was developed and validated for LV chamber quantification and strain analysis in cardiotoxicity detection." @default.
- W3128386968 created "2021-02-15" @default.
- W3128386968 creator A5019134133 @default.
- W3128386968 creator A5023127517 @default.
- W3128386968 creator A5076926991 @default.
- W3128386968 creator A5083447265 @default.
- W3128386968 creator A5089324795 @default.
- W3128386968 date "2021-04-01" @default.
- W3128386968 modified "2023-09-26" @default.
- W3128386968 title "Validation of a deep-learning semantic segmentation approach to fully automate MRI-based left-ventricular deformation analysis in cardiotoxicity" @default.
- W3128386968 cites W148860973 @default.
- W3128386968 cites W1808348829 @default.
- W3128386968 cites W1856451111 @default.
- W3128386968 cites W1963780084 @default.
- W3128386968 cites W1973955570 @default.
- W3128386968 cites W1981190300 @default.
- W3128386968 cites W1990371307 @default.
- W3128386968 cites W1992383649 @default.
- W3128386968 cites W2012231760 @default.
- W3128386968 cites W2015795623 @default.
- W3128386968 cites W2020747361 @default.
- W3128386968 cites W2029542561 @default.
- W3128386968 cites W2029830549 @default.
- W3128386968 cites W2032973865 @default.
- W3128386968 cites W2033117273 @default.
- W3128386968 cites W2035019396 @default.
- W3128386968 cites W2054698148 @default.
- W3128386968 cites W2059240422 @default.
- W3128386968 cites W2076803848 @default.
- W3128386968 cites W2109255472 @default.
- W3128386968 cites W2129526042 @default.
- W3128386968 cites W2133712226 @default.
- W3128386968 cites W2147646179 @default.
- W3128386968 cites W2150674437 @default.
- W3128386968 cites W2154066911 @default.
- W3128386968 cites W2160754664 @default.
- W3128386968 cites W2170913861 @default.
- W3128386968 cites W2194775991 @default.
- W3128386968 cites W2274227799 @default.
- W3128386968 cites W2295802084 @default.
- W3128386968 cites W2324274219 @default.
- W3128386968 cites W2366936356 @default.
- W3128386968 cites W2412782625 @default.
- W3128386968 cites W2517647639 @default.
- W3128386968 cites W2575820504 @default.
- W3128386968 cites W2618530766 @default.
- W3128386968 cites W2702116941 @default.
- W3128386968 cites W2758343255 @default.
- W3128386968 cites W2761615849 @default.
- W3128386968 cites W2764148593 @default.
- W3128386968 cites W2789300675 @default.
- W3128386968 cites W2789635006 @default.
- W3128386968 cites W2803176574 @default.
- W3128386968 cites W2892091703 @default.
- W3128386968 cites W2897944447 @default.
- W3128386968 cites W2919434187 @default.
- W3128386968 cites W2942777796 @default.
- W3128386968 cites W2946050503 @default.
- W3128386968 cites W2954674355 @default.
- W3128386968 cites W2962807789 @default.
- W3128386968 cites W2962872526 @default.
- W3128386968 cites W2964043069 @default.
- W3128386968 cites W2964118901 @default.
- W3128386968 cites W2964309882 @default.
- W3128386968 cites W2966269666 @default.
- W3128386968 cites W2980440493 @default.
- W3128386968 cites W3000143867 @default.
- W3128386968 cites W3101612813 @default.
- W3128386968 cites W3105282616 @default.
- W3128386968 cites W3106057905 @default.
- W3128386968 cites W36650246 @default.
- W3128386968 doi "https://doi.org/10.1259/bjr.20201101" @default.
- W3128386968 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8010548" @default.
- W3128386968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33571002" @default.
- W3128386968 hasPublicationYear "2021" @default.
- W3128386968 type Work @default.
- W3128386968 sameAs 3128386968 @default.
- W3128386968 citedByCount "2" @default.
- W3128386968 countsByYear W31283869682022 @default.
- W3128386968 countsByYear W31283869682023 @default.
- W3128386968 crossrefType "journal-article" @default.
- W3128386968 hasAuthorship W3128386968A5019134133 @default.
- W3128386968 hasAuthorship W3128386968A5023127517 @default.
- W3128386968 hasAuthorship W3128386968A5076926991 @default.
- W3128386968 hasAuthorship W3128386968A5083447265 @default.
- W3128386968 hasAuthorship W3128386968A5089324795 @default.
- W3128386968 hasBestOaLocation W31283869682 @default.
- W3128386968 hasConcept C126322002 @default.
- W3128386968 hasConcept C154945302 @default.
- W3128386968 hasConcept C2778198053 @default.
- W3128386968 hasConcept C2989005 @default.
- W3128386968 hasConcept C41008148 @default.
- W3128386968 hasConcept C71924100 @default.
- W3128386968 hasConcept C78085059 @default.
- W3128386968 hasConceptScore W3128386968C126322002 @default.
- W3128386968 hasConceptScore W3128386968C154945302 @default.
- W3128386968 hasConceptScore W3128386968C2778198053 @default.
- W3128386968 hasConceptScore W3128386968C2989005 @default.