Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128490849> ?p ?o ?g. }
- W3128490849 endingPage "1027" @default.
- W3128490849 startingPage "1009" @default.
- W3128490849 abstract "Abstract. The phosphorus (P) concentration of soil solution is of key importance for plant nutrition. During large rainfall events, the P concentration is altered by lateral and vertical subsurface storm flow (SSF) that facilitates P mobilization, redistribution within the soil profile and potential P export from the ecosystem. These processes are not well studied under field conditions. Important factors of the replenishment of P concentrations in soil solutions are the rate of P replenishment (by biotic and abiotic processes) and the P buffering capacity of soils. Lab experiments have shown that replenishment times can vary between minutes and months. The question remains of how P concentrations in lateral and vertical SSF vary under natural field conditions. We present results of large-scale sprinkling experiments simulating 150 mm throughfall at 200 m2 plots on hillslopes at three beech forests in Germany. We aimed at quantifying lateral and vertical SSF and associated P concentrations on the forest floor, in the mineral soil and in the saprolite during sprinkling experiments in spring and summer. The sites differed mainly in terms of soil depth, skeleton content and soil P stock (between 189 and 624 g/m2 in the top 1 m soil depth). Vertical SSF in the mineral soil and in the saprolite was at least 2 orders of magnitude larger than lateral SSF at the same depth. Vertical and lateral SSF consisted mainly of pre-event water that was replaced by sprinkling water. Higher P concentrations in SSF in the first 1 to 2 h after the onset of SSF indicated nutrient flushing, but P concentrations in the mineral soil and saprolite were nearly constant thereafter for most of the experiment despite a strong increase in SSF. This suggests that P in the soil solution at all three sites was replenished fast by mineral or organic sources. If chemostatic transport conditions would dominate in SSF, annual P losses at the lateral and vertical boundary of a forest plot could be approximated by knowing the average P concentration and the water fluxes in forest soils. A rough estimation of the annual P loss based on this simplified assumption for one of our sites with longer SSF data resulted in an annual P loss of 3.16 mg/m2/a. This P loss is similar to estimates from a previous study at the same site using bi-weekly groundwater samples. Our approximated annual P loss in SSF was in a similar order of magnitude as P input by dry and wet deposition and by mineral weathering. Despite the fact that P losses from the ecosystem seem to be small, the translocation of P from the forest floor to the mineral soil might be of high relevance at sites with low P stocks where the forest floor is the dominant source for the P nutrition of trees." @default.
- W3128490849 created "2021-02-15" @default.
- W3128490849 creator A5034642883 @default.
- W3128490849 creator A5046878352 @default.
- W3128490849 creator A5050338142 @default.
- W3128490849 creator A5067442586 @default.
- W3128490849 creator A5068067362 @default.
- W3128490849 date "2021-02-11" @default.
- W3128490849 modified "2023-09-25" @default.
- W3128490849 title "Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?" @default.
- W3128490849 cites W1964589705 @default.
- W3128490849 cites W1967922336 @default.
- W3128490849 cites W1969134186 @default.
- W3128490849 cites W1972356074 @default.
- W3128490849 cites W1974528955 @default.
- W3128490849 cites W1980832433 @default.
- W3128490849 cites W1990145540 @default.
- W3128490849 cites W1990428561 @default.
- W3128490849 cites W1993229367 @default.
- W3128490849 cites W1995291155 @default.
- W3128490849 cites W1995724908 @default.
- W3128490849 cites W1998250489 @default.
- W3128490849 cites W2012314489 @default.
- W3128490849 cites W2030615997 @default.
- W3128490849 cites W2034521627 @default.
- W3128490849 cites W2045437041 @default.
- W3128490849 cites W2045495110 @default.
- W3128490849 cites W2056132261 @default.
- W3128490849 cites W2057702308 @default.
- W3128490849 cites W2057965787 @default.
- W3128490849 cites W2060564817 @default.
- W3128490849 cites W2062083363 @default.
- W3128490849 cites W2066200023 @default.
- W3128490849 cites W2070283304 @default.
- W3128490849 cites W2077518792 @default.
- W3128490849 cites W2080531343 @default.
- W3128490849 cites W2087167966 @default.
- W3128490849 cites W2090247706 @default.
- W3128490849 cites W2093618424 @default.
- W3128490849 cites W2094790358 @default.
- W3128490849 cites W2096712594 @default.
- W3128490849 cites W2106174824 @default.
- W3128490849 cites W2125382680 @default.
- W3128490849 cites W2131992506 @default.
- W3128490849 cites W2139266119 @default.
- W3128490849 cites W2143359154 @default.
- W3128490849 cites W2154586460 @default.
- W3128490849 cites W2159971298 @default.
- W3128490849 cites W2164087962 @default.
- W3128490849 cites W2164132878 @default.
- W3128490849 cites W2164658679 @default.
- W3128490849 cites W2231772104 @default.
- W3128490849 cites W2251804206 @default.
- W3128490849 cites W2270632600 @default.
- W3128490849 cites W2469977742 @default.
- W3128490849 cites W2496182531 @default.
- W3128490849 cites W2565751036 @default.
- W3128490849 cites W2593845240 @default.
- W3128490849 cites W2594801911 @default.
- W3128490849 cites W2602962734 @default.
- W3128490849 cites W2730426384 @default.
- W3128490849 cites W2738172692 @default.
- W3128490849 cites W2743266547 @default.
- W3128490849 cites W2751400702 @default.
- W3128490849 cites W2754286154 @default.
- W3128490849 cites W2765749997 @default.
- W3128490849 cites W2772211860 @default.
- W3128490849 cites W2796126995 @default.
- W3128490849 cites W2805039897 @default.
- W3128490849 cites W2888151089 @default.
- W3128490849 cites W2892210810 @default.
- W3128490849 cites W2895330015 @default.
- W3128490849 cites W2914827563 @default.
- W3128490849 cites W2962023200 @default.
- W3128490849 cites W2993811095 @default.
- W3128490849 cites W3006676331 @default.
- W3128490849 cites W3089427544 @default.
- W3128490849 cites W3128490849 @default.
- W3128490849 cites W4213187897 @default.
- W3128490849 cites W4249848518 @default.
- W3128490849 cites W4254497784 @default.
- W3128490849 doi "https://doi.org/10.5194/bg-18-1009-2021" @default.
- W3128490849 hasPublicationYear "2021" @default.
- W3128490849 type Work @default.
- W3128490849 sameAs 3128490849 @default.
- W3128490849 citedByCount "6" @default.
- W3128490849 countsByYear W31284908492021 @default.
- W3128490849 countsByYear W31284908492022 @default.
- W3128490849 countsByYear W31284908492023 @default.
- W3128490849 crossrefType "journal-article" @default.
- W3128490849 hasAuthorship W3128490849A5034642883 @default.
- W3128490849 hasAuthorship W3128490849A5046878352 @default.
- W3128490849 hasAuthorship W3128490849A5050338142 @default.
- W3128490849 hasAuthorship W3128490849A5067442586 @default.
- W3128490849 hasAuthorship W3128490849A5068067362 @default.
- W3128490849 hasBestOaLocation W31284908491 @default.
- W3128490849 hasConcept C100187453 @default.
- W3128490849 hasConcept C121923324 @default.