Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128504039> ?p ?o ?g. }
- W3128504039 endingPage "113825" @default.
- W3128504039 startingPage "113825" @default.
- W3128504039 abstract "The Prognostic and Health Management (PHM) has been developed for more than two decades. It is capable to anticipate the impending failures and make decisions in advance to extend the lifespan of the target systems, such as Proton Exchange Membrane Fuel Cell (PEMFC) systems. Prognostic is a critical stage of PHM. Among various prognostic methods, the data-driven ones could predict the system lifespan based on the device’s knowledge and historical data. In the Remaining Useful Life (RUL) prediction, the Health Indicators (HIs) should be able to reflect the health states of the PEMFC stack. Moreover, an effective HI could help to define an explicit degradation state and improve the prediction accuracy. The HIs of voltage and power are usually used under static conditions due to their monotonic decreasing characteristics. Besides, the measurements of voltage and current are implemented easily in practice. Nevertheless, the static HIs are unable to be directly used under the dynamic operating conditions because they are sensitive to the mission profiles. To overcome the weakness of static HIs, a convenient and practical HI named Relative Power-loss Rate (RPLR) is proposed herein. According to the polarization curve at the beginning of life, the initial power under different mission profiles can be identified. Then the actual power is obtained by monitoring the current and voltage continuously. Finally, the RPLR is calculated based on the initial power and actual power. Afterward, the RUL of PEMFC is predicted by some Artificial Intelligence (AI) prognostic algorithms. Among the various data-driven prognostic approaches, Echo State Network (ESN) has provided an efficient and promising solution for the RUL prediction of PEMFC systems. Compared with classical Recurrent Neural Network (RNN), it could accelerate the convergence rate and reduce the computational complexity. Nevertheless, the traditionally used single-input ESN structure is feeble to handle the varying mission profiles. As a scheduling variable, the current is an interesting parameter since it represents the working properties to some extent. Considering the system’s dynamic characteristics, the stack current is regarded as another input of ESN, and the output matrix’s dimension is increased at the same time. Therefore, a double-input ESN structure is proposed to enhance the prediction performance. Based on the dynamic HI of RPLR, three dynamic micro-cogeneration (μ-CHP) durability tests of PEMFC systems are used to verify the improved ESN prediction structure." @default.
- W3128504039 created "2021-02-15" @default.
- W3128504039 creator A5006918284 @default.
- W3128504039 creator A5009772455 @default.
- W3128504039 creator A5014188352 @default.
- W3128504039 creator A5015412323 @default.
- W3128504039 creator A5069952795 @default.
- W3128504039 date "2021-03-01" @default.
- W3128504039 modified "2023-10-18" @default.
- W3128504039 title "Remaining useful life prediction of PEMFC systems under dynamic operating conditions" @default.
- W3128504039 cites W1974763478 @default.
- W3128504039 cites W1974961318 @default.
- W3128504039 cites W1978950079 @default.
- W3128504039 cites W1990894243 @default.
- W3128504039 cites W2001263627 @default.
- W3128504039 cites W2033800551 @default.
- W3128504039 cites W2059410869 @default.
- W3128504039 cites W2062630100 @default.
- W3128504039 cites W2089000836 @default.
- W3128504039 cites W2101589741 @default.
- W3128504039 cites W2177933918 @default.
- W3128504039 cites W2204993982 @default.
- W3128504039 cites W2224715553 @default.
- W3128504039 cites W2295424966 @default.
- W3128504039 cites W2402858412 @default.
- W3128504039 cites W2462220025 @default.
- W3128504039 cites W2470387191 @default.
- W3128504039 cites W2530278562 @default.
- W3128504039 cites W2560983609 @default.
- W3128504039 cites W2580792538 @default.
- W3128504039 cites W2585008544 @default.
- W3128504039 cites W2591781824 @default.
- W3128504039 cites W2644914961 @default.
- W3128504039 cites W2765732926 @default.
- W3128504039 cites W2772891663 @default.
- W3128504039 cites W2789405844 @default.
- W3128504039 cites W2808076542 @default.
- W3128504039 cites W2892180865 @default.
- W3128504039 cites W2909815042 @default.
- W3128504039 cites W2913221680 @default.
- W3128504039 cites W2923704944 @default.
- W3128504039 cites W2934590265 @default.
- W3128504039 cites W2935832762 @default.
- W3128504039 cites W2945337306 @default.
- W3128504039 cites W2947214013 @default.
- W3128504039 cites W2954555058 @default.
- W3128504039 cites W2968405028 @default.
- W3128504039 cites W2981391389 @default.
- W3128504039 cites W2989706501 @default.
- W3128504039 cites W2995202226 @default.
- W3128504039 cites W3006087526 @default.
- W3128504039 cites W3010836948 @default.
- W3128504039 cites W3015997296 @default.
- W3128504039 cites W3018254030 @default.
- W3128504039 cites W3025159188 @default.
- W3128504039 cites W3048155337 @default.
- W3128504039 cites W3099427616 @default.
- W3128504039 cites W4294719703 @default.
- W3128504039 doi "https://doi.org/10.1016/j.enconman.2021.113825" @default.
- W3128504039 hasPublicationYear "2021" @default.
- W3128504039 type Work @default.
- W3128504039 sameAs 3128504039 @default.
- W3128504039 citedByCount "47" @default.
- W3128504039 countsByYear W31285040392021 @default.
- W3128504039 countsByYear W31285040392022 @default.
- W3128504039 countsByYear W31285040392023 @default.
- W3128504039 crossrefType "journal-article" @default.
- W3128504039 hasAuthorship W3128504039A5006918284 @default.
- W3128504039 hasAuthorship W3128504039A5009772455 @default.
- W3128504039 hasAuthorship W3128504039A5014188352 @default.
- W3128504039 hasAuthorship W3128504039A5015412323 @default.
- W3128504039 hasAuthorship W3128504039A5069952795 @default.
- W3128504039 hasBestOaLocation W31285040392 @default.
- W3128504039 hasConcept C119599485 @default.
- W3128504039 hasConcept C121332964 @default.
- W3128504039 hasConcept C127413603 @default.
- W3128504039 hasConcept C129364497 @default.
- W3128504039 hasConcept C132319479 @default.
- W3128504039 hasConcept C154945302 @default.
- W3128504039 hasConcept C163258240 @default.
- W3128504039 hasConcept C165801399 @default.
- W3128504039 hasConcept C199360897 @default.
- W3128504039 hasConcept C200601418 @default.
- W3128504039 hasConcept C2777294910 @default.
- W3128504039 hasConcept C2780440489 @default.
- W3128504039 hasConcept C2987658370 @default.
- W3128504039 hasConcept C41008148 @default.
- W3128504039 hasConcept C42360764 @default.
- W3128504039 hasConcept C555008776 @default.
- W3128504039 hasConcept C62520636 @default.
- W3128504039 hasConcept C89227174 @default.
- W3128504039 hasConcept C9395851 @default.
- W3128504039 hasConceptScore W3128504039C119599485 @default.
- W3128504039 hasConceptScore W3128504039C121332964 @default.
- W3128504039 hasConceptScore W3128504039C127413603 @default.
- W3128504039 hasConceptScore W3128504039C129364497 @default.
- W3128504039 hasConceptScore W3128504039C132319479 @default.
- W3128504039 hasConceptScore W3128504039C154945302 @default.