Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128518082> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W3128518082 abstract "This research work is concerned with the predictability of ensemble and singular tree-based machine learning algorithms during the recession and prosperity of the two companies listed in the Tehran Stock Exchange in the context of big data. In this regard, the main issue is that economic managers and the academic community require predicting models with more accuracy and reduced execution time; moreover, the prediction of the companies recession in the stock market is highly significant. Machine learning algorithms must be able to appropriately predict the stock return sign during the market downturn and boom days. Addressing the stated challenge will upgrade the quality of stock purchases and, subsequently, will increase profitability. In this article, the proposed solution relies on the utilization of tree-based machine learning algorithms in the context of big data. The proposed solution exploits the decision tree algorithm, which is a traditional and singular tree-based learning algorithm. Furthermore, two modern and ensemble tree-based learning algorithms, random forest and gradient boosted tree, has been utilized for predicting the stock return sign during recession and prosperity. The mentioned cases were implemented by applying the machine learning tools in python programming language and PYSPARK library that is used explicitly for the big data context. The utilized research data of the current study are the shares information of two companies of the Tehran Stock Exchange. The obtained results reveal that the applied ensemble learning algorithms have performed better than the singular learning algorithms. Additionally, adding 23 technical features to the initial data and subsequent applying of the PCA feature reduction method have demonstrated the best performance among other modes. In the meantime, it has been concluded that the initial data do not possess the proper resolution or generalizability, either during prosperity or recession." @default.
- W3128518082 created "2021-02-15" @default.
- W3128518082 creator A5021849468 @default.
- W3128518082 creator A5043996404 @default.
- W3128518082 creator A5050579078 @default.
- W3128518082 date "2021-01-01" @default.
- W3128518082 modified "2023-09-27" @default.
- W3128518082 title "The Predictability of Tree-based Machine Learning Algorithms in the Big Data Context" @default.
- W3128518082 doi "https://doi.org/10.5829/ije.2021.34.01a.10" @default.
- W3128518082 hasPublicationYear "2021" @default.
- W3128518082 type Work @default.
- W3128518082 sameAs 3128518082 @default.
- W3128518082 citedByCount "0" @default.
- W3128518082 crossrefType "journal-article" @default.
- W3128518082 hasAuthorship W3128518082A5021849468 @default.
- W3128518082 hasAuthorship W3128518082A5043996404 @default.
- W3128518082 hasAuthorship W3128518082A5050579078 @default.
- W3128518082 hasBestOaLocation W31285180821 @default.
- W3128518082 hasConcept C10138342 @default.
- W3128518082 hasConcept C11413529 @default.
- W3128518082 hasConcept C119857082 @default.
- W3128518082 hasConcept C124101348 @default.
- W3128518082 hasConcept C154945302 @default.
- W3128518082 hasConcept C162324750 @default.
- W3128518082 hasConcept C169258074 @default.
- W3128518082 hasConcept C200870193 @default.
- W3128518082 hasConcept C41008148 @default.
- W3128518082 hasConcept C45942800 @default.
- W3128518082 hasConcept C70153297 @default.
- W3128518082 hasConcept C75684735 @default.
- W3128518082 hasConcept C84525736 @default.
- W3128518082 hasConceptScore W3128518082C10138342 @default.
- W3128518082 hasConceptScore W3128518082C11413529 @default.
- W3128518082 hasConceptScore W3128518082C119857082 @default.
- W3128518082 hasConceptScore W3128518082C124101348 @default.
- W3128518082 hasConceptScore W3128518082C154945302 @default.
- W3128518082 hasConceptScore W3128518082C162324750 @default.
- W3128518082 hasConceptScore W3128518082C169258074 @default.
- W3128518082 hasConceptScore W3128518082C200870193 @default.
- W3128518082 hasConceptScore W3128518082C41008148 @default.
- W3128518082 hasConceptScore W3128518082C45942800 @default.
- W3128518082 hasConceptScore W3128518082C70153297 @default.
- W3128518082 hasConceptScore W3128518082C75684735 @default.
- W3128518082 hasConceptScore W3128518082C84525736 @default.
- W3128518082 hasLocation W31285180821 @default.
- W3128518082 hasOpenAccess W3128518082 @default.
- W3128518082 hasPrimaryLocation W31285180821 @default.
- W3128518082 hasRelatedWork W10715555 @default.
- W3128518082 hasRelatedWork W12010550 @default.
- W3128518082 hasRelatedWork W12428677 @default.
- W3128518082 hasRelatedWork W13188192 @default.
- W3128518082 hasRelatedWork W13692438 @default.
- W3128518082 hasRelatedWork W14024944 @default.
- W3128518082 hasRelatedWork W14430987 @default.
- W3128518082 hasRelatedWork W1472067 @default.
- W3128518082 hasRelatedWork W6479499 @default.
- W3128518082 hasRelatedWork W9481221 @default.
- W3128518082 isParatext "false" @default.
- W3128518082 isRetracted "false" @default.
- W3128518082 magId "3128518082" @default.
- W3128518082 workType "article" @default.