Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128520552> ?p ?o ?g. }
- W3128520552 endingPage "100165" @default.
- W3128520552 startingPage "100165" @default.
- W3128520552 abstract "Lodging is a common problem in rice, reducing its yield and mechanical harvesting efficiency. Rice architecture is a key aspect of its domestication and a major factor that limits its high productivity. The ideal rice culm structure, including major_axis_culm, minor axis_culm, and wall thickness_culm, is critical for improving lodging resistance. However, the traditional method of measuring rice culms is destructive, time consuming, and labor intensive. In this study, we used a high-throughput micro-CT-RGB imaging system and deep learning (SegNet) to develop a high-throughput micro-CT image analysis pipeline that can extract 24 rice culm morphological traits and lodging resistance-related traits. When manual and automatic measurements were compared at the mature stage, the mean absolute percentage errors for major_axis_culm, minor_axis_culm, and wall_thickness_culm in 104 indica rice accessions were 6.03%, 5.60%, and 9.85%, respectively, and the R2 values were 0.799, 0.818, and 0.623. We also built models of bending stress using culm traits at the mature and tillering stages, and the R2 values were 0.722 and 0.544, respectively. The modeling results indicated that this method can quantify lodging resistance nondestructively, even at an early growth stage. In addition, we also evaluated the relationships of bending stress to shoot dry weight, culm density, and drought-related traits and found that plants with greater resistance to bending stress had slightly higher biomass, culm density, and culm area but poorer drought resistance. In conclusion, we developed a deep learning-integrated micro-CT image analysis pipeline to accurately quantify the phenotypic traits of rice culms in ∼4.6 min per plant; this pipeline will assist in future high-throughput screening of large rice populations for lodging resistance." @default.
- W3128520552 created "2021-02-15" @default.
- W3128520552 creator A5000049930 @default.
- W3128520552 creator A5000330024 @default.
- W3128520552 creator A5030131762 @default.
- W3128520552 creator A5032529074 @default.
- W3128520552 creator A5035643615 @default.
- W3128520552 creator A5054614570 @default.
- W3128520552 creator A5054764202 @default.
- W3128520552 creator A5060964756 @default.
- W3128520552 creator A5061742859 @default.
- W3128520552 creator A5061911091 @default.
- W3128520552 creator A5064239814 @default.
- W3128520552 creator A5076409244 @default.
- W3128520552 creator A5076720384 @default.
- W3128520552 date "2021-03-01" @default.
- W3128520552 modified "2023-10-18" @default.
- W3128520552 title "A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits" @default.
- W3128520552 cites W1968498907 @default.
- W3128520552 cites W1968963818 @default.
- W3128520552 cites W1973242103 @default.
- W3128520552 cites W1981400414 @default.
- W3128520552 cites W2006550512 @default.
- W3128520552 cites W2024502818 @default.
- W3128520552 cites W2030087904 @default.
- W3128520552 cites W2037976862 @default.
- W3128520552 cites W2073643304 @default.
- W3128520552 cites W2077431243 @default.
- W3128520552 cites W2085718140 @default.
- W3128520552 cites W2086330580 @default.
- W3128520552 cites W2088056158 @default.
- W3128520552 cites W2092829070 @default.
- W3128520552 cites W2140839335 @default.
- W3128520552 cites W2152224191 @default.
- W3128520552 cites W2153217300 @default.
- W3128520552 cites W2154786126 @default.
- W3128520552 cites W2155195110 @default.
- W3128520552 cites W2157150618 @default.
- W3128520552 cites W2161039417 @default.
- W3128520552 cites W2163528675 @default.
- W3128520552 cites W2170487914 @default.
- W3128520552 cites W2270160110 @default.
- W3128520552 cites W2293250554 @default.
- W3128520552 cites W2432050995 @default.
- W3128520552 cites W2592646906 @default.
- W3128520552 cites W2611227133 @default.
- W3128520552 cites W2624443265 @default.
- W3128520552 cites W2752292611 @default.
- W3128520552 cites W2759494166 @default.
- W3128520552 cites W2790979755 @default.
- W3128520552 cites W2791160863 @default.
- W3128520552 cites W2794458896 @default.
- W3128520552 cites W2799759580 @default.
- W3128520552 cites W2805916667 @default.
- W3128520552 cites W2898091285 @default.
- W3128520552 cites W2949712375 @default.
- W3128520552 cites W2963881378 @default.
- W3128520552 cites W3100006985 @default.
- W3128520552 cites W639708223 @default.
- W3128520552 doi "https://doi.org/10.1016/j.xplc.2021.100165" @default.
- W3128520552 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8060729" @default.
- W3128520552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33898978" @default.
- W3128520552 hasPublicationYear "2021" @default.
- W3128520552 type Work @default.
- W3128520552 sameAs 3128520552 @default.
- W3128520552 citedByCount "18" @default.
- W3128520552 countsByYear W31285205522021 @default.
- W3128520552 countsByYear W31285205522022 @default.
- W3128520552 countsByYear W31285205522023 @default.
- W3128520552 crossrefType "journal-article" @default.
- W3128520552 hasAuthorship W3128520552A5000049930 @default.
- W3128520552 hasAuthorship W3128520552A5000330024 @default.
- W3128520552 hasAuthorship W3128520552A5030131762 @default.
- W3128520552 hasAuthorship W3128520552A5032529074 @default.
- W3128520552 hasAuthorship W3128520552A5035643615 @default.
- W3128520552 hasAuthorship W3128520552A5054614570 @default.
- W3128520552 hasAuthorship W3128520552A5054764202 @default.
- W3128520552 hasAuthorship W3128520552A5060964756 @default.
- W3128520552 hasAuthorship W3128520552A5061742859 @default.
- W3128520552 hasAuthorship W3128520552A5061911091 @default.
- W3128520552 hasAuthorship W3128520552A5064239814 @default.
- W3128520552 hasAuthorship W3128520552A5076409244 @default.
- W3128520552 hasAuthorship W3128520552A5076720384 @default.
- W3128520552 hasBestOaLocation W31285205521 @default.
- W3128520552 hasConcept C115540264 @default.
- W3128520552 hasConcept C134121241 @default.
- W3128520552 hasConcept C144027150 @default.
- W3128520552 hasConcept C159985019 @default.
- W3128520552 hasConcept C192562407 @default.
- W3128520552 hasConcept C197321923 @default.
- W3128520552 hasConcept C57473165 @default.
- W3128520552 hasConcept C6557445 @default.
- W3128520552 hasConcept C86803240 @default.
- W3128520552 hasConceptScore W3128520552C115540264 @default.
- W3128520552 hasConceptScore W3128520552C134121241 @default.
- W3128520552 hasConceptScore W3128520552C144027150 @default.
- W3128520552 hasConceptScore W3128520552C159985019 @default.
- W3128520552 hasConceptScore W3128520552C192562407 @default.