Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128554162> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3128554162 abstract "Automatic classification of modulation formats in the presence of noise is a challenging problem which has wide applications in intelligent communication systems. It is a major step towards accurate signal detection on the receiver side given stringent requirements such as spectral efficiency, reliability, latency etc. Deep learning techniques have found wide success in image recognition, detection, speech recognition as well as reinforcement learning domains. In this study, we compared and contrasted 2D and 3D Convolutional Neural Networks (CNNs) for the task of automatic recognition of modulation formats. We used random images of cat, that are modulated using 16 and 64 Quadrature Amplitude Modulation (QAM) formats, passed through Rayleigh and Rician channel formats and classified using both 2D and 3D CNN architectures. We tried 5 and 10 fold cross-validation procedures that are widely used in the literature. We have observed the best performance results in terms of reported metrics of the 3D CNN architecture trained using 10-fold cross-validation and the performance of 2D CNN architecture trained using 10-fold cross-validation procedure to be the worst. We obtained a perfect value of 100% in terms of performance metrics like sensitivity, precision, F-measure, balanced accuracy and specificity, when using 3D architecture trained using 10-fold cross-validation procedure for binary classification among 16 and 64 QAM modulation formats corrupted by Rayleigh and Rician channel noises." @default.
- W3128554162 created "2021-02-15" @default.
- W3128554162 creator A5013067914 @default.
- W3128554162 creator A5027119125 @default.
- W3128554162 creator A5036074334 @default.
- W3128554162 creator A5036669418 @default.
- W3128554162 creator A5076201139 @default.
- W3128554162 date "2020-12-06" @default.
- W3128554162 modified "2023-10-16" @default.
- W3128554162 title "Binary Classification of Modulation Formats in the Presence of Noise through Convolutional Neural Networks" @default.
- W3128554162 cites W2001803602 @default.
- W3128554162 cites W2793405769 @default.
- W3128554162 cites W2797571648 @default.
- W3128554162 cites W2886161635 @default.
- W3128554162 cites W2889035719 @default.
- W3128554162 cites W2906011407 @default.
- W3128554162 cites W2914839109 @default.
- W3128554162 cites W2916238263 @default.
- W3128554162 cites W2945337584 @default.
- W3128554162 cites W2951655307 @default.
- W3128554162 cites W2962734576 @default.
- W3128554162 cites W2963537617 @default.
- W3128554162 cites W2964121744 @default.
- W3128554162 cites W2982509551 @default.
- W3128554162 cites W2985246794 @default.
- W3128554162 cites W2996904338 @default.
- W3128554162 cites W3003494250 @default.
- W3128554162 cites W3008441132 @default.
- W3128554162 cites W3010976968 @default.
- W3128554162 cites W3012548231 @default.
- W3128554162 doi "https://doi.org/10.1109/icsp48669.2020.9321024" @default.
- W3128554162 hasPublicationYear "2020" @default.
- W3128554162 type Work @default.
- W3128554162 sameAs 3128554162 @default.
- W3128554162 citedByCount "1" @default.
- W3128554162 countsByYear W31285541622022 @default.
- W3128554162 crossrefType "proceedings-article" @default.
- W3128554162 hasAuthorship W3128554162A5013067914 @default.
- W3128554162 hasAuthorship W3128554162A5027119125 @default.
- W3128554162 hasAuthorship W3128554162A5036074334 @default.
- W3128554162 hasAuthorship W3128554162A5036669418 @default.
- W3128554162 hasAuthorship W3128554162A5076201139 @default.
- W3128554162 hasConcept C107038049 @default.
- W3128554162 hasConcept C108583219 @default.
- W3128554162 hasConcept C12267149 @default.
- W3128554162 hasConcept C123079801 @default.
- W3128554162 hasConcept C127162648 @default.
- W3128554162 hasConcept C138885662 @default.
- W3128554162 hasConcept C153180895 @default.
- W3128554162 hasConcept C154945302 @default.
- W3128554162 hasConcept C28490314 @default.
- W3128554162 hasConcept C32409245 @default.
- W3128554162 hasConcept C33923547 @default.
- W3128554162 hasConcept C41008148 @default.
- W3128554162 hasConcept C48372109 @default.
- W3128554162 hasConcept C50644808 @default.
- W3128554162 hasConcept C56296756 @default.
- W3128554162 hasConcept C59030546 @default.
- W3128554162 hasConcept C66905080 @default.
- W3128554162 hasConcept C76155785 @default.
- W3128554162 hasConcept C81363708 @default.
- W3128554162 hasConcept C94375191 @default.
- W3128554162 hasConceptScore W3128554162C107038049 @default.
- W3128554162 hasConceptScore W3128554162C108583219 @default.
- W3128554162 hasConceptScore W3128554162C12267149 @default.
- W3128554162 hasConceptScore W3128554162C123079801 @default.
- W3128554162 hasConceptScore W3128554162C127162648 @default.
- W3128554162 hasConceptScore W3128554162C138885662 @default.
- W3128554162 hasConceptScore W3128554162C153180895 @default.
- W3128554162 hasConceptScore W3128554162C154945302 @default.
- W3128554162 hasConceptScore W3128554162C28490314 @default.
- W3128554162 hasConceptScore W3128554162C32409245 @default.
- W3128554162 hasConceptScore W3128554162C33923547 @default.
- W3128554162 hasConceptScore W3128554162C41008148 @default.
- W3128554162 hasConceptScore W3128554162C48372109 @default.
- W3128554162 hasConceptScore W3128554162C50644808 @default.
- W3128554162 hasConceptScore W3128554162C56296756 @default.
- W3128554162 hasConceptScore W3128554162C59030546 @default.
- W3128554162 hasConceptScore W3128554162C66905080 @default.
- W3128554162 hasConceptScore W3128554162C76155785 @default.
- W3128554162 hasConceptScore W3128554162C81363708 @default.
- W3128554162 hasConceptScore W3128554162C94375191 @default.
- W3128554162 hasLocation W31285541621 @default.
- W3128554162 hasOpenAccess W3128554162 @default.
- W3128554162 hasPrimaryLocation W31285541621 @default.
- W3128554162 hasRelatedWork W11553578 @default.
- W3128554162 hasRelatedWork W1383942 @default.
- W3128554162 hasRelatedWork W13920906 @default.
- W3128554162 hasRelatedWork W2582698 @default.
- W3128554162 hasRelatedWork W3506425 @default.
- W3128554162 hasRelatedWork W5535156 @default.
- W3128554162 hasRelatedWork W7626849 @default.
- W3128554162 hasRelatedWork W7958345 @default.
- W3128554162 hasRelatedWork W9190101 @default.
- W3128554162 hasRelatedWork W9362070 @default.
- W3128554162 isParatext "false" @default.
- W3128554162 isRetracted "false" @default.
- W3128554162 magId "3128554162" @default.
- W3128554162 workType "article" @default.