Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128585438> ?p ?o ?g. }
- W3128585438 endingPage "e26627" @default.
- W3128585438 startingPage "e26627" @default.
- W3128585438 abstract "Background Global efforts toward the development and deployment of a vaccine for COVID-19 are rapidly advancing. To achieve herd immunity, widespread administration of vaccines is required, which necessitates significant cooperation from the general public. As such, it is crucial that governments and public health agencies understand public sentiments toward vaccines, which can help guide educational campaigns and other targeted policy interventions. Objective The aim of this study was to develop and apply an artificial intelligence–based approach to analyze public sentiments on social media in the United Kingdom and the United States toward COVID-19 vaccines to better understand the public attitude and concerns regarding COVID-19 vaccines. Methods Over 300,000 social media posts related to COVID-19 vaccines were extracted, including 23,571 Facebook posts from the United Kingdom and 144,864 from the United States, along with 40,268 tweets from the United Kingdom and 98,385 from the United States from March 1 to November 22, 2020. We used natural language processing and deep learning–based techniques to predict average sentiments, sentiment trends, and topics of discussion. These factors were analyzed longitudinally and geospatially, and manual reading of randomly selected posts on points of interest helped identify underlying themes and validated insights from the analysis. Results Overall averaged positive, negative, and neutral sentiments were at 58%, 22%, and 17% in the United Kingdom, compared to 56%, 24%, and 18% in the United States, respectively. Public optimism over vaccine development, effectiveness, and trials as well as concerns over their safety, economic viability, and corporation control were identified. We compared our findings to those of nationwide surveys in both countries and found them to correlate broadly. Conclusions Artificial intelligence–enabled social media analysis should be considered for adoption by institutions and governments alongside surveys and other conventional methods of assessing public attitude. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccines, help address the concerns of vaccine sceptics, and help develop more effective policies and communication strategies to maximize uptake." @default.
- W3128585438 created "2021-02-15" @default.
- W3128585438 creator A5019898978 @default.
- W3128585438 creator A5030917821 @default.
- W3128585438 creator A5040958129 @default.
- W3128585438 creator A5058869522 @default.
- W3128585438 creator A5062211930 @default.
- W3128585438 creator A5066306728 @default.
- W3128585438 creator A5068981769 @default.
- W3128585438 creator A5073617984 @default.
- W3128585438 date "2021-04-05" @default.
- W3128585438 modified "2023-10-17" @default.
- W3128585438 title "Artificial Intelligence–Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study" @default.
- W3128585438 cites W2025328578 @default.
- W3128585438 cites W2099813784 @default.
- W3128585438 cites W2514305824 @default.
- W3128585438 cites W2607331267 @default.
- W3128585438 cites W2618673889 @default.
- W3128585438 cites W2768956845 @default.
- W3128585438 cites W2888868298 @default.
- W3128585438 cites W2980718707 @default.
- W3128585438 cites W2987388689 @default.
- W3128585438 cites W2999386893 @default.
- W3128585438 cites W3001746929 @default.
- W3128585438 cites W3015218641 @default.
- W3128585438 cites W3015622078 @default.
- W3128585438 cites W3016912427 @default.
- W3128585438 cites W3033201346 @default.
- W3128585438 cites W3035333974 @default.
- W3128585438 cites W3046481203 @default.
- W3128585438 cites W3047045277 @default.
- W3128585438 cites W3048424114 @default.
- W3128585438 cites W3077780682 @default.
- W3128585438 cites W3083688453 @default.
- W3128585438 cites W3083820245 @default.
- W3128585438 cites W3084066599 @default.
- W3128585438 cites W3084350025 @default.
- W3128585438 cites W3093387841 @default.
- W3128585438 cites W3093974194 @default.
- W3128585438 doi "https://doi.org/10.2196/26627" @default.
- W3128585438 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8023383" @default.
- W3128585438 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33724919" @default.
- W3128585438 hasPublicationYear "2021" @default.
- W3128585438 type Work @default.
- W3128585438 sameAs 3128585438 @default.
- W3128585438 citedByCount "173" @default.
- W3128585438 countsByYear W31285854382020 @default.
- W3128585438 countsByYear W31285854382021 @default.
- W3128585438 countsByYear W31285854382022 @default.
- W3128585438 countsByYear W31285854382023 @default.
- W3128585438 crossrefType "journal-article" @default.
- W3128585438 hasAuthorship W3128585438A5019898978 @default.
- W3128585438 hasAuthorship W3128585438A5030917821 @default.
- W3128585438 hasAuthorship W3128585438A5040958129 @default.
- W3128585438 hasAuthorship W3128585438A5058869522 @default.
- W3128585438 hasAuthorship W3128585438A5062211930 @default.
- W3128585438 hasAuthorship W3128585438A5066306728 @default.
- W3128585438 hasAuthorship W3128585438A5068981769 @default.
- W3128585438 hasAuthorship W3128585438A5073617984 @default.
- W3128585438 hasBestOaLocation W31285854381 @default.
- W3128585438 hasConcept C106192422 @default.
- W3128585438 hasConcept C134698397 @default.
- W3128585438 hasConcept C138816342 @default.
- W3128585438 hasConcept C142724271 @default.
- W3128585438 hasConcept C159110408 @default.
- W3128585438 hasConcept C17744445 @default.
- W3128585438 hasConcept C199539241 @default.
- W3128585438 hasConcept C23131810 @default.
- W3128585438 hasConcept C27415008 @default.
- W3128585438 hasConcept C2908647359 @default.
- W3128585438 hasConcept C39549134 @default.
- W3128585438 hasConcept C518677369 @default.
- W3128585438 hasConcept C71924100 @default.
- W3128585438 hasConcept C94625758 @default.
- W3128585438 hasConcept C99454951 @default.
- W3128585438 hasConceptScore W3128585438C106192422 @default.
- W3128585438 hasConceptScore W3128585438C134698397 @default.
- W3128585438 hasConceptScore W3128585438C138816342 @default.
- W3128585438 hasConceptScore W3128585438C142724271 @default.
- W3128585438 hasConceptScore W3128585438C159110408 @default.
- W3128585438 hasConceptScore W3128585438C17744445 @default.
- W3128585438 hasConceptScore W3128585438C199539241 @default.
- W3128585438 hasConceptScore W3128585438C23131810 @default.
- W3128585438 hasConceptScore W3128585438C27415008 @default.
- W3128585438 hasConceptScore W3128585438C2908647359 @default.
- W3128585438 hasConceptScore W3128585438C39549134 @default.
- W3128585438 hasConceptScore W3128585438C518677369 @default.
- W3128585438 hasConceptScore W3128585438C71924100 @default.
- W3128585438 hasConceptScore W3128585438C94625758 @default.
- W3128585438 hasConceptScore W3128585438C99454951 @default.
- W3128585438 hasIssue "4" @default.
- W3128585438 hasLocation W31285854381 @default.
- W3128585438 hasLocation W31285854382 @default.
- W3128585438 hasLocation W31285854383 @default.
- W3128585438 hasLocation W31285854384 @default.
- W3128585438 hasLocation W31285854385 @default.
- W3128585438 hasOpenAccess W3128585438 @default.
- W3128585438 hasPrimaryLocation W31285854381 @default.