Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128586590> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3128586590 endingPage "152" @default.
- W3128586590 startingPage "132" @default.
- W3128586590 abstract "Abstract Long-term travel time prediction, ahead of making a trip, is vital from the planning perspective of delivery freight, timetable design, vehicle/crew scheduling and further activities. The better the prediction is, the higher the reliability of service that can be offered. This study presents a discrete and continuous combined analysis for attaining improved long-term travel time prediction (LTTP) of commercial vehicles. One main problem of LTTP is that the speed factors are unknown ahead of trips. In light of this, the nonnegative tensor factorization and completion with neural weighted initialization is proposed to extract the potential speed patterns among multiple discrete factors and to complete the sparse tensors. The Gaussian mixture regression is adopted for handling the continuous factors. The proposed methodology with a combined discrete and continuous analysis is able to effectively integrate multiple factors into the computation, including vehicle type, road type, days, time period, weather conditions, driver differences and travel distance. The methodology is able to reduce the long-term travel time prediction error between 14% and 43% compared with the traditional average speed method and other baseline methods, which suggests its effectiveness. It can strategically assist policy-making processes of stakeholders on investment, insurance, planning and management, and can help tactically in predicting long-term travel time ahead of the scheduled trips to improve the reliability of the schedules. Furthermore, operationally, it can also be used to enrich current navigation information systems by separately predicting the commercial vehicles’ travel time based on multiple factors." @default.
- W3128586590 created "2021-02-15" @default.
- W3128586590 creator A5023693291 @default.
- W3128586590 creator A5032483455 @default.
- W3128586590 creator A5035125034 @default.
- W3128586590 creator A5066039392 @default.
- W3128586590 creator A5084686197 @default.
- W3128586590 date "2021-03-01" @default.
- W3128586590 modified "2023-09-30" @default.
- W3128586590 title "New method for predicting long-term travel time of commercial vehicles to improve policy-making processes" @default.
- W3128586590 cites W1568416770 @default.
- W3128586590 cites W1772240793 @default.
- W3128586590 cites W1902027874 @default.
- W3128586590 cites W1963826206 @default.
- W3128586590 cites W1968154520 @default.
- W3128586590 cites W1983074193 @default.
- W3128586590 cites W1984328578 @default.
- W3128586590 cites W1990368529 @default.
- W3128586590 cites W1997833569 @default.
- W3128586590 cites W2000215628 @default.
- W3128586590 cites W2024165284 @default.
- W3128586590 cites W2024205955 @default.
- W3128586590 cites W2051224630 @default.
- W3128586590 cites W2052835594 @default.
- W3128586590 cites W2059832076 @default.
- W3128586590 cites W2088252337 @default.
- W3128586590 cites W2113076747 @default.
- W3128586590 cites W2127529517 @default.
- W3128586590 cites W2144475703 @default.
- W3128586590 cites W2161581167 @default.
- W3128586590 cites W2239838331 @default.
- W3128586590 cites W2340001811 @default.
- W3128586590 cites W2342643507 @default.
- W3128586590 cites W2343352690 @default.
- W3128586590 cites W2523512863 @default.
- W3128586590 cites W2594156556 @default.
- W3128586590 cites W2769148481 @default.
- W3128586590 cites W2793036390 @default.
- W3128586590 cites W2884159946 @default.
- W3128586590 cites W2895479895 @default.
- W3128586590 cites W2911554803 @default.
- W3128586590 cites W3105806700 @default.
- W3128586590 cites W335644182 @default.
- W3128586590 cites W4250412936 @default.
- W3128586590 doi "https://doi.org/10.1016/j.tra.2020.12.003" @default.
- W3128586590 hasPublicationYear "2021" @default.
- W3128586590 type Work @default.
- W3128586590 sameAs 3128586590 @default.
- W3128586590 citedByCount "6" @default.
- W3128586590 countsByYear W31285865902022 @default.
- W3128586590 countsByYear W31285865902023 @default.
- W3128586590 crossrefType "journal-article" @default.
- W3128586590 hasAuthorship W3128586590A5023693291 @default.
- W3128586590 hasAuthorship W3128586590A5032483455 @default.
- W3128586590 hasAuthorship W3128586590A5035125034 @default.
- W3128586590 hasAuthorship W3128586590A5066039392 @default.
- W3128586590 hasAuthorship W3128586590A5084686197 @default.
- W3128586590 hasConcept C105639569 @default.
- W3128586590 hasConcept C121332964 @default.
- W3128586590 hasConcept C127413603 @default.
- W3128586590 hasConcept C144133560 @default.
- W3128586590 hasConcept C3020009124 @default.
- W3128586590 hasConcept C41008148 @default.
- W3128586590 hasConcept C42475967 @default.
- W3128586590 hasConcept C61797465 @default.
- W3128586590 hasConcept C62520636 @default.
- W3128586590 hasConceptScore W3128586590C105639569 @default.
- W3128586590 hasConceptScore W3128586590C121332964 @default.
- W3128586590 hasConceptScore W3128586590C127413603 @default.
- W3128586590 hasConceptScore W3128586590C144133560 @default.
- W3128586590 hasConceptScore W3128586590C3020009124 @default.
- W3128586590 hasConceptScore W3128586590C41008148 @default.
- W3128586590 hasConceptScore W3128586590C42475967 @default.
- W3128586590 hasConceptScore W3128586590C61797465 @default.
- W3128586590 hasConceptScore W3128586590C62520636 @default.
- W3128586590 hasFunder F4320321001 @default.
- W3128586590 hasLocation W31285865901 @default.
- W3128586590 hasOpenAccess W3128586590 @default.
- W3128586590 hasPrimaryLocation W31285865901 @default.
- W3128586590 hasRelatedWork W1967105661 @default.
- W3128586590 hasRelatedWork W2320432872 @default.
- W3128586590 hasRelatedWork W2321558144 @default.
- W3128586590 hasRelatedWork W2372022541 @default.
- W3128586590 hasRelatedWork W2891769814 @default.
- W3128586590 hasRelatedWork W2964937788 @default.
- W3128586590 hasRelatedWork W3002258295 @default.
- W3128586590 hasRelatedWork W3145928973 @default.
- W3128586590 hasRelatedWork W4255698817 @default.
- W3128586590 hasRelatedWork W4297797992 @default.
- W3128586590 hasVolume "145" @default.
- W3128586590 isParatext "false" @default.
- W3128586590 isRetracted "false" @default.
- W3128586590 magId "3128586590" @default.
- W3128586590 workType "article" @default.