Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128596107> ?p ?o ?g. }
- W3128596107 endingPage "219" @default.
- W3128596107 startingPage "219" @default.
- W3128596107 abstract "Trend prediction based on sensor data in a multi-sensor system is an important topic. As the number of sensors increases, we can measure and store more and more data. However, the increase in data has not effectively improved prediction performance. This paper focuses on this problem and presents a distributed predictor that can overcome unrelated data and sensor noise: First, we define the causality entropy to calculate the measurement’s causality. Then, the series causality coefficient (SCC) is proposed to select the high causal measurement as the input data. To overcome the traditional deep learning network’s over-fitting to the sensor noise, the Bayesian method is used to obtain the weight distribution characteristics of the sub-predictor network. A multi-layer perceptron (MLP) is constructed as the fusion layer to fuse the results from different sub-predictors. The experiments were implemented to verify the effectiveness of the proposed method by meteorological data from Beijing. The results show that the proposed predictor can effectively model the multi-sensor system’s big measurement data to improve prediction performance." @default.
- W3128596107 created "2021-02-15" @default.
- W3128596107 creator A5012278873 @default.
- W3128596107 creator A5025536472 @default.
- W3128596107 creator A5031227420 @default.
- W3128596107 creator A5042530895 @default.
- W3128596107 creator A5067818846 @default.
- W3128596107 creator A5074411545 @default.
- W3128596107 creator A5088907463 @default.
- W3128596107 date "2021-02-11" @default.
- W3128596107 modified "2023-09-29" @default.
- W3128596107 title "Distributed Deep Fusion Predictor for a Multi-Sensor System Based on Causality Entropy" @default.
- W3128596107 cites W2089409887 @default.
- W3128596107 cites W2115307050 @default.
- W3128596107 cites W2516232829 @default.
- W3128596107 cites W2519863903 @default.
- W3128596107 cites W2546614000 @default.
- W3128596107 cites W2560332100 @default.
- W3128596107 cites W2614481326 @default.
- W3128596107 cites W2624921137 @default.
- W3128596107 cites W2767257026 @default.
- W3128596107 cites W2767490306 @default.
- W3128596107 cites W2774416061 @default.
- W3128596107 cites W2783556645 @default.
- W3128596107 cites W2789154978 @default.
- W3128596107 cites W2795713901 @default.
- W3128596107 cites W2796551753 @default.
- W3128596107 cites W2801465633 @default.
- W3128596107 cites W2812669263 @default.
- W3128596107 cites W2839526029 @default.
- W3128596107 cites W2884984074 @default.
- W3128596107 cites W2888165363 @default.
- W3128596107 cites W2900191042 @default.
- W3128596107 cites W2903250535 @default.
- W3128596107 cites W2903802301 @default.
- W3128596107 cites W2905388713 @default.
- W3128596107 cites W2910890149 @default.
- W3128596107 cites W2913211573 @default.
- W3128596107 cites W2914487400 @default.
- W3128596107 cites W2919854899 @default.
- W3128596107 cites W2940265767 @default.
- W3128596107 cites W2941741524 @default.
- W3128596107 cites W2942211525 @default.
- W3128596107 cites W2944429688 @default.
- W3128596107 cites W2948535221 @default.
- W3128596107 cites W2951507907 @default.
- W3128596107 cites W2958339834 @default.
- W3128596107 cites W2961951330 @default.
- W3128596107 cites W2965516457 @default.
- W3128596107 cites W2966784196 @default.
- W3128596107 cites W2967521173 @default.
- W3128596107 cites W2969891237 @default.
- W3128596107 cites W2974068849 @default.
- W3128596107 cites W2974780582 @default.
- W3128596107 cites W2978737999 @default.
- W3128596107 cites W2979757634 @default.
- W3128596107 cites W2981704113 @default.
- W3128596107 cites W2982824732 @default.
- W3128596107 cites W2987623830 @default.
- W3128596107 cites W2993509553 @default.
- W3128596107 cites W2997444524 @default.
- W3128596107 cites W3005177200 @default.
- W3128596107 cites W3006048679 @default.
- W3128596107 cites W3009822251 @default.
- W3128596107 cites W3010421437 @default.
- W3128596107 cites W3017977360 @default.
- W3128596107 cites W3033016579 @default.
- W3128596107 cites W3036353324 @default.
- W3128596107 cites W3043723847 @default.
- W3128596107 cites W3045162186 @default.
- W3128596107 cites W3048646098 @default.
- W3128596107 cites W3084014984 @default.
- W3128596107 cites W3084888580 @default.
- W3128596107 cites W3089090728 @default.
- W3128596107 cites W3089611792 @default.
- W3128596107 cites W3093537666 @default.
- W3128596107 cites W3101150805 @default.
- W3128596107 cites W3112410207 @default.
- W3128596107 cites W3118313511 @default.
- W3128596107 cites W3168956518 @default.
- W3128596107 doi "https://doi.org/10.3390/e23020219" @default.
- W3128596107 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7916859" @default.
- W3128596107 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33670098" @default.
- W3128596107 hasPublicationYear "2021" @default.
- W3128596107 type Work @default.
- W3128596107 sameAs 3128596107 @default.
- W3128596107 citedByCount "32" @default.
- W3128596107 countsByYear W31285961072021 @default.
- W3128596107 countsByYear W31285961072022 @default.
- W3128596107 countsByYear W31285961072023 @default.
- W3128596107 crossrefType "journal-article" @default.
- W3128596107 hasAuthorship W3128596107A5012278873 @default.
- W3128596107 hasAuthorship W3128596107A5025536472 @default.
- W3128596107 hasAuthorship W3128596107A5031227420 @default.
- W3128596107 hasAuthorship W3128596107A5042530895 @default.
- W3128596107 hasAuthorship W3128596107A5067818846 @default.
- W3128596107 hasAuthorship W3128596107A5074411545 @default.
- W3128596107 hasAuthorship W3128596107A5088907463 @default.