Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128608752> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3128608752 endingPage "821" @default.
- W3128608752 startingPage "821" @default.
- W3128608752 abstract "Recent years have witnessed a rapidly expanding use of artificial intelligence and machine learning in medical imaging. Generative adversarial networks (GANs) are techniques to synthesize images based on artificial neural networks and deep learning. In addition to the flexibility and versatility inherent in deep learning on which the GANs are based, the potential problem-solving ability of the GANs has attracted attention and is being vigorously studied in the medical and molecular imaging fields. Here this narrative review provides a comprehensive overview for GANs and discuss their usefulness in medical and molecular imaging on the following topics: (I) data augmentation to increase training data for AI-based computer-aided diagnosis as a solution for the data-hungry nature of such training sets; (II) modality conversion to complement the shortcomings of a single modality that reflects certain physical measurement principles, such as from magnetic resonance (MR) to computed tomography (CT) images or vice versa; (III) de-noising to realize less injection and/or radiation dose for nuclear medicine and CT; (IV) image reconstruction for shortening MR acquisition time while maintaining high image quality; (V) super-resolution to produce a high-resolution image from low-resolution one; (VI) domain adaptation which utilizes knowledge such as supervised labels and annotations from a source domain to the target domain with no or insufficient knowledge; and (VII) image generation with disease severity and radiogenomics. GANs are promising tools for medical and molecular imaging. The progress of model architectures and their applications should continue to be noteworthy." @default.
- W3128608752 created "2021-02-15" @default.
- W3128608752 creator A5013962241 @default.
- W3128608752 creator A5016440729 @default.
- W3128608752 creator A5031324764 @default.
- W3128608752 creator A5040217228 @default.
- W3128608752 creator A5045592295 @default.
- W3128608752 creator A5049568817 @default.
- W3128608752 creator A5067187971 @default.
- W3128608752 date "2021-05-01" @default.
- W3128608752 modified "2023-10-01" @default.
- W3128608752 title "Narrative review of generative adversarial networks in medical and molecular imaging" @default.
- W3128608752 cites W1983281817 @default.
- W3128608752 cites W2567079332 @default.
- W3128608752 cites W2617128058 @default.
- W3128608752 cites W2743780012 @default.
- W3128608752 cites W2748739903 @default.
- W3128608752 cites W2751416363 @default.
- W3128608752 cites W2767225568 @default.
- W3128608752 cites W2767236661 @default.
- W3128608752 cites W2780987579 @default.
- W3128608752 cites W2789588857 @default.
- W3128608752 cites W2790555529 @default.
- W3128608752 cites W2791621240 @default.
- W3128608752 cites W2883105305 @default.
- W3128608752 cites W2887675517 @default.
- W3128608752 cites W2904319976 @default.
- W3128608752 cites W2998494322 @default.
- W3128608752 cites W3021216971 @default.
- W3128608752 cites W3093276592 @default.
- W3128608752 cites W3105747145 @default.
- W3128608752 cites W3121602751 @default.
- W3128608752 doi "https://doi.org/10.21037/atm-20-6325" @default.
- W3128608752 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8246192" @default.
- W3128608752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34268434" @default.
- W3128608752 hasPublicationYear "2021" @default.
- W3128608752 type Work @default.
- W3128608752 sameAs 3128608752 @default.
- W3128608752 citedByCount "14" @default.
- W3128608752 countsByYear W31286087522021 @default.
- W3128608752 countsByYear W31286087522022 @default.
- W3128608752 countsByYear W31286087522023 @default.
- W3128608752 crossrefType "journal-article" @default.
- W3128608752 hasAuthorship W3128608752A5013962241 @default.
- W3128608752 hasAuthorship W3128608752A5016440729 @default.
- W3128608752 hasAuthorship W3128608752A5031324764 @default.
- W3128608752 hasAuthorship W3128608752A5040217228 @default.
- W3128608752 hasAuthorship W3128608752A5045592295 @default.
- W3128608752 hasAuthorship W3128608752A5049568817 @default.
- W3128608752 hasAuthorship W3128608752A5067187971 @default.
- W3128608752 hasBestOaLocation W31286087521 @default.
- W3128608752 hasConcept C105795698 @default.
- W3128608752 hasConcept C108583219 @default.
- W3128608752 hasConcept C119857082 @default.
- W3128608752 hasConcept C134306372 @default.
- W3128608752 hasConcept C154945302 @default.
- W3128608752 hasConcept C2780226545 @default.
- W3128608752 hasConcept C2780598303 @default.
- W3128608752 hasConcept C31601959 @default.
- W3128608752 hasConcept C33923547 @default.
- W3128608752 hasConcept C36503486 @default.
- W3128608752 hasConcept C39890363 @default.
- W3128608752 hasConcept C41008148 @default.
- W3128608752 hasConceptScore W3128608752C105795698 @default.
- W3128608752 hasConceptScore W3128608752C108583219 @default.
- W3128608752 hasConceptScore W3128608752C119857082 @default.
- W3128608752 hasConceptScore W3128608752C134306372 @default.
- W3128608752 hasConceptScore W3128608752C154945302 @default.
- W3128608752 hasConceptScore W3128608752C2780226545 @default.
- W3128608752 hasConceptScore W3128608752C2780598303 @default.
- W3128608752 hasConceptScore W3128608752C31601959 @default.
- W3128608752 hasConceptScore W3128608752C33923547 @default.
- W3128608752 hasConceptScore W3128608752C36503486 @default.
- W3128608752 hasConceptScore W3128608752C39890363 @default.
- W3128608752 hasConceptScore W3128608752C41008148 @default.
- W3128608752 hasIssue "9" @default.
- W3128608752 hasLocation W31286087521 @default.
- W3128608752 hasLocation W31286087522 @default.
- W3128608752 hasLocation W31286087523 @default.
- W3128608752 hasOpenAccess W3128608752 @default.
- W3128608752 hasPrimaryLocation W31286087521 @default.
- W3128608752 hasRelatedWork W3014300295 @default.
- W3128608752 hasRelatedWork W3164822677 @default.
- W3128608752 hasRelatedWork W4223943233 @default.
- W3128608752 hasRelatedWork W4225161397 @default.
- W3128608752 hasRelatedWork W4297820521 @default.
- W3128608752 hasRelatedWork W4312200629 @default.
- W3128608752 hasRelatedWork W4360585206 @default.
- W3128608752 hasRelatedWork W4364306694 @default.
- W3128608752 hasRelatedWork W4380075502 @default.
- W3128608752 hasRelatedWork W4380086463 @default.
- W3128608752 hasVolume "9" @default.
- W3128608752 isParatext "false" @default.
- W3128608752 isRetracted "false" @default.
- W3128608752 magId "3128608752" @default.
- W3128608752 workType "article" @default.