Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128636679> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3128636679 abstract "Mammalian protein-coding sequence detection provides a wide range of applications in biodiversity research, evolutionary studies, and understanding of genomic features. Representation of genomic sequences in Chaos Game Representation (CGR) helps reveal hidden features in DNA sequences due to its ability to represent sequences in both numerical and graphical levels. Machine learning approaches can automatically detect hidden patterns in CGR images by detecting and classifying protein-coding and noncoding patterns accurately. Here, we propose a pipeline that automatically detects coding (exons) and non-coding (intron) sequences in mammalian genomes. We collected coding and non-coding sequences from 20 mammalian-specific genes (PRM3, CSN1S1, LCE6A, IL2, MUC7, NNAT, IGIP, SMCP, DCD, and MYEOV), and GCR images were generated from these genes. Five supervised machine learning classifier algorithms (Naive Bayes algorithm, Logistic Regression algorithm, K-Nearest Neighbor algorithm, Perceptron algorithm, and support vector machine (SVM)) were evaluated, using features extracted from CGR images as an input. In Summary, the Ensemble model between Logistic regression, perceptron and SVM has achieved the highest accuracy with a mean performance of mean and standard deviation. Our findings recommend applying an ensemble model between Logistic regression, Perceptron and SVM for classifying coding and non-coding sequences for future mammalian related CGR genomic studies." @default.
- W3128636679 created "2021-02-15" @default.
- W3128636679 creator A5009211008 @default.
- W3128636679 creator A5039274697 @default.
- W3128636679 creator A5060283705 @default.
- W3128636679 creator A5069484090 @default.
- W3128636679 creator A5084412026 @default.
- W3128636679 date "2020-12-16" @default.
- W3128636679 modified "2023-10-17" @default.
- W3128636679 title "Detection of Mammalian Coding Sequences Using a Hybrid Approach of Chaos Game Representation and Machine Learning" @default.
- W3128636679 cites W1999645825 @default.
- W3128636679 cites W2068308871 @default.
- W3128636679 cites W2077096663 @default.
- W3128636679 cites W2098475202 @default.
- W3128636679 cites W2129103781 @default.
- W3128636679 cites W2949712892 @default.
- W3128636679 cites W2974021440 @default.
- W3128636679 cites W2985785244 @default.
- W3128636679 doi "https://doi.org/10.1109/bibm49941.2020.9313497" @default.
- W3128636679 hasPublicationYear "2020" @default.
- W3128636679 type Work @default.
- W3128636679 sameAs 3128636679 @default.
- W3128636679 citedByCount "1" @default.
- W3128636679 countsByYear W31286366792022 @default.
- W3128636679 crossrefType "proceedings-article" @default.
- W3128636679 hasAuthorship W3128636679A5009211008 @default.
- W3128636679 hasAuthorship W3128636679A5039274697 @default.
- W3128636679 hasAuthorship W3128636679A5060283705 @default.
- W3128636679 hasAuthorship W3128636679A5069484090 @default.
- W3128636679 hasAuthorship W3128636679A5084412026 @default.
- W3128636679 hasConcept C119857082 @default.
- W3128636679 hasConcept C12267149 @default.
- W3128636679 hasConcept C153180895 @default.
- W3128636679 hasConcept C154945302 @default.
- W3128636679 hasConcept C179717631 @default.
- W3128636679 hasConcept C41008148 @default.
- W3128636679 hasConcept C50644808 @default.
- W3128636679 hasConcept C52001869 @default.
- W3128636679 hasConcept C60908668 @default.
- W3128636679 hasConceptScore W3128636679C119857082 @default.
- W3128636679 hasConceptScore W3128636679C12267149 @default.
- W3128636679 hasConceptScore W3128636679C153180895 @default.
- W3128636679 hasConceptScore W3128636679C154945302 @default.
- W3128636679 hasConceptScore W3128636679C179717631 @default.
- W3128636679 hasConceptScore W3128636679C41008148 @default.
- W3128636679 hasConceptScore W3128636679C50644808 @default.
- W3128636679 hasConceptScore W3128636679C52001869 @default.
- W3128636679 hasConceptScore W3128636679C60908668 @default.
- W3128636679 hasLocation W31286366791 @default.
- W3128636679 hasOpenAccess W3128636679 @default.
- W3128636679 hasPrimaryLocation W31286366791 @default.
- W3128636679 hasRelatedWork W13426584 @default.
- W3128636679 hasRelatedWork W1383942 @default.
- W3128636679 hasRelatedWork W14688374 @default.
- W3128636679 hasRelatedWork W3540334 @default.
- W3128636679 hasRelatedWork W5683678 @default.
- W3128636679 hasRelatedWork W6552940 @default.
- W3128636679 hasRelatedWork W7283634 @default.
- W3128636679 hasRelatedWork W7285770 @default.
- W3128636679 hasRelatedWork W14468734 @default.
- W3128636679 hasRelatedWork W6520261 @default.
- W3128636679 isParatext "false" @default.
- W3128636679 isRetracted "false" @default.
- W3128636679 magId "3128636679" @default.
- W3128636679 workType "article" @default.