Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128641376> ?p ?o ?g. }
- W3128641376 endingPage "104262" @default.
- W3128641376 startingPage "104262" @default.
- W3128641376 abstract "The ambient noise in controlled-source electromagnetic (CSEM) data seriously affects the accuracy and reliability of the exploration result. Traditional correlation-based data selection method requires manually setting the threshold. To overcome the deficiency, we analyze the typical noises in CSEM data and find that normalized cross-correlation (NCC), absolute maximum value of the amplitude (Max), and detrend fluctuation analysis (DFA) can be used to accurately identify high-quality time series. Based on this discovery, we replace traditional manually intervention with unsupervised machine learning and propose a novel CSEM data processing method. We applied the newly proposed method to synthetic and measured CSEM data to verify the feasibility and effectiveness. Experimental results demonstrate that the newly proposed method is superior to the conventional data selection method because it accurately selects the best data fragments from noisy data automatically. The newly proposed method requires no human intervention which makes the results obtained free of subjective distortion caused by the operator." @default.
- W3128641376 created "2021-02-15" @default.
- W3128641376 creator A5003616691 @default.
- W3128641376 creator A5011049312 @default.
- W3128641376 creator A5015057605 @default.
- W3128641376 creator A5023174735 @default.
- W3128641376 creator A5033971897 @default.
- W3128641376 creator A5039441050 @default.
- W3128641376 creator A5081263804 @default.
- W3128641376 date "2021-03-01" @default.
- W3128641376 modified "2023-10-16" @default.
- W3128641376 title "Robust CSEM data processing by unsupervised machine learning" @default.
- W3128641376 cites W1973048907 @default.
- W3128641376 cites W2007221293 @default.
- W3128641376 cites W2007943671 @default.
- W3128641376 cites W2013046778 @default.
- W3128641376 cites W2037051485 @default.
- W3128641376 cites W2075089273 @default.
- W3128641376 cites W2097889020 @default.
- W3128641376 cites W2106782121 @default.
- W3128641376 cites W2120390927 @default.
- W3128641376 cites W2133463614 @default.
- W3128641376 cites W2165073014 @default.
- W3128641376 cites W2283544056 @default.
- W3128641376 cites W2345680641 @default.
- W3128641376 cites W2508878551 @default.
- W3128641376 cites W2618838201 @default.
- W3128641376 cites W2699715469 @default.
- W3128641376 cites W2736370107 @default.
- W3128641376 cites W2763474475 @default.
- W3128641376 cites W2789912341 @default.
- W3128641376 cites W2793494562 @default.
- W3128641376 cites W2793819603 @default.
- W3128641376 cites W2801139135 @default.
- W3128641376 cites W2890746703 @default.
- W3128641376 cites W2914507540 @default.
- W3128641376 cites W2924020583 @default.
- W3128641376 cites W2969771669 @default.
- W3128641376 cites W2970638092 @default.
- W3128641376 cites W2978289624 @default.
- W3128641376 cites W2988289215 @default.
- W3128641376 cites W3016451887 @default.
- W3128641376 cites W3127132385 @default.
- W3128641376 doi "https://doi.org/10.1016/j.jappgeo.2021.104262" @default.
- W3128641376 hasPublicationYear "2021" @default.
- W3128641376 type Work @default.
- W3128641376 sameAs 3128641376 @default.
- W3128641376 citedByCount "5" @default.
- W3128641376 countsByYear W31286413762022 @default.
- W3128641376 countsByYear W31286413762023 @default.
- W3128641376 crossrefType "journal-article" @default.
- W3128641376 hasAuthorship W3128641376A5003616691 @default.
- W3128641376 hasAuthorship W3128641376A5011049312 @default.
- W3128641376 hasAuthorship W3128641376A5015057605 @default.
- W3128641376 hasAuthorship W3128641376A5023174735 @default.
- W3128641376 hasAuthorship W3128641376A5033971897 @default.
- W3128641376 hasAuthorship W3128641376A5039441050 @default.
- W3128641376 hasAuthorship W3128641376A5081263804 @default.
- W3128641376 hasConcept C104317684 @default.
- W3128641376 hasConcept C11413529 @default.
- W3128641376 hasConcept C115961682 @default.
- W3128641376 hasConcept C117220453 @default.
- W3128641376 hasConcept C119857082 @default.
- W3128641376 hasConcept C121332964 @default.
- W3128641376 hasConcept C124101348 @default.
- W3128641376 hasConcept C126780896 @default.
- W3128641376 hasConcept C153180895 @default.
- W3128641376 hasConcept C154945302 @default.
- W3128641376 hasConcept C158448853 @default.
- W3128641376 hasConcept C163258240 @default.
- W3128641376 hasConcept C17020691 @default.
- W3128641376 hasConcept C185592680 @default.
- W3128641376 hasConcept C194257627 @default.
- W3128641376 hasConcept C2524010 @default.
- W3128641376 hasConcept C2776257435 @default.
- W3128641376 hasConcept C2781170535 @default.
- W3128641376 hasConcept C31258907 @default.
- W3128641376 hasConcept C33923547 @default.
- W3128641376 hasConcept C41008148 @default.
- W3128641376 hasConcept C43214815 @default.
- W3128641376 hasConcept C55493867 @default.
- W3128641376 hasConcept C62520636 @default.
- W3128641376 hasConcept C81917197 @default.
- W3128641376 hasConcept C86339819 @default.
- W3128641376 hasConcept C99498987 @default.
- W3128641376 hasConceptScore W3128641376C104317684 @default.
- W3128641376 hasConceptScore W3128641376C11413529 @default.
- W3128641376 hasConceptScore W3128641376C115961682 @default.
- W3128641376 hasConceptScore W3128641376C117220453 @default.
- W3128641376 hasConceptScore W3128641376C119857082 @default.
- W3128641376 hasConceptScore W3128641376C121332964 @default.
- W3128641376 hasConceptScore W3128641376C124101348 @default.
- W3128641376 hasConceptScore W3128641376C126780896 @default.
- W3128641376 hasConceptScore W3128641376C153180895 @default.
- W3128641376 hasConceptScore W3128641376C154945302 @default.
- W3128641376 hasConceptScore W3128641376C158448853 @default.
- W3128641376 hasConceptScore W3128641376C163258240 @default.
- W3128641376 hasConceptScore W3128641376C17020691 @default.