Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128661750> ?p ?o ?g. }
- W3128661750 abstract "Sentiment Analysis (SA) is the field that combines Natural Language Processing (NLP), Computational Linguistics (CL) and text analysis to study people's opinions through, by extracting and analyzing subjective information from different resources as the Web, social media and similar sources and so help in drawing public's sentiments or attitude toward certain people, products or ideas and extracting the contextual polarity of the information. This review focuses on recent work in SA using Deep Learning (DL)techniques in the sentiment classification process, it is based on the articles published through ScienceDirect and Springer databases in the interval from 2016 to 2020.It sheds the light on different DL algorithms used, different applications of SA systems. 58 articles studied in ScienceDirect While 26 articles in Springer satisfying the same criteria with the total of 84 articles studied and analyzed in this review. The review concerns with DL techniques, language, domain, and performance results." @default.
- W3128661750 created "2021-02-15" @default.
- W3128661750 creator A5071262880 @default.
- W3128661750 creator A5079627258 @default.
- W3128661750 creator A5090371887 @default.
- W3128661750 date "2020-12-15" @default.
- W3128661750 modified "2023-09-27" @default.
- W3128661750 title "Deep Learning Approach in Sentiment Analysis: A Review" @default.
- W3128661750 cites W1908808128 @default.
- W3128661750 cites W2064675550 @default.
- W3128661750 cites W2107878631 @default.
- W3128661750 cites W2157331557 @default.
- W3128661750 cites W2163922914 @default.
- W3128661750 cites W2294143381 @default.
- W3128661750 cites W2509192301 @default.
- W3128661750 cites W2552192644 @default.
- W3128661750 cites W2584429674 @default.
- W3128661750 cites W2593134789 @default.
- W3128661750 cites W2736282266 @default.
- W3128661750 cites W2746308373 @default.
- W3128661750 cites W2746802549 @default.
- W3128661750 cites W2767299343 @default.
- W3128661750 cites W2769317996 @default.
- W3128661750 cites W2770073503 @default.
- W3128661750 cites W2770736169 @default.
- W3128661750 cites W2787396463 @default.
- W3128661750 cites W2790670377 @default.
- W3128661750 cites W2790875963 @default.
- W3128661750 cites W2794946186 @default.
- W3128661750 cites W2796018820 @default.
- W3128661750 cites W2796388855 @default.
- W3128661750 cites W2801873317 @default.
- W3128661750 cites W2811227420 @default.
- W3128661750 cites W2884001105 @default.
- W3128661750 cites W2887510128 @default.
- W3128661750 cites W2890474745 @default.
- W3128661750 cites W2892137778 @default.
- W3128661750 cites W2899180252 @default.
- W3128661750 cites W2900946789 @default.
- W3128661750 cites W2901095409 @default.
- W3128661750 cites W2901770030 @default.
- W3128661750 cites W2901884847 @default.
- W3128661750 cites W2901922204 @default.
- W3128661750 cites W2910215611 @default.
- W3128661750 cites W2910656009 @default.
- W3128661750 cites W2913959954 @default.
- W3128661750 cites W2914363692 @default.
- W3128661750 cites W2919350184 @default.
- W3128661750 cites W2920898473 @default.
- W3128661750 cites W2921169207 @default.
- W3128661750 cites W2921600946 @default.
- W3128661750 cites W2921875967 @default.
- W3128661750 cites W2923528470 @default.
- W3128661750 cites W2932164076 @default.
- W3128661750 cites W2933466962 @default.
- W3128661750 cites W2938903045 @default.
- W3128661750 cites W2947189214 @default.
- W3128661750 cites W2947781656 @default.
- W3128661750 cites W2949029099 @default.
- W3128661750 cites W2949202718 @default.
- W3128661750 cites W2950883513 @default.
- W3128661750 cites W2952198026 @default.
- W3128661750 cites W2953751391 @default.
- W3128661750 cites W2954278817 @default.
- W3128661750 cites W2955279457 @default.
- W3128661750 cites W2966861509 @default.
- W3128661750 cites W2971299489 @default.
- W3128661750 cites W2971586182 @default.
- W3128661750 cites W2973508239 @default.
- W3128661750 cites W2974143130 @default.
- W3128661750 cites W2980718707 @default.
- W3128661750 cites W2983575401 @default.
- W3128661750 cites W2988766153 @default.
- W3128661750 cites W2989092762 @default.
- W3128661750 cites W2990055902 @default.
- W3128661750 cites W2998308531 @default.
- W3128661750 cites W2998556395 @default.
- W3128661750 cites W2999606367 @default.
- W3128661750 cites W3000495592 @default.
- W3128661750 cites W3005043037 @default.
- W3128661750 cites W3005880472 @default.
- W3128661750 cites W3006745533 @default.
- W3128661750 cites W3010388538 @default.
- W3128661750 cites W3010694694 @default.
- W3128661750 cites W3011384704 @default.
- W3128661750 cites W3015642072 @default.
- W3128661750 cites W3018312910 @default.
- W3128661750 cites W3021062812 @default.
- W3128661750 cites W3021874562 @default.
- W3128661750 cites W3022050883 @default.
- W3128661750 cites W3023726311 @default.
- W3128661750 cites W3026627762 @default.
- W3128661750 cites W3028222879 @default.
- W3128661750 cites W3032634577 @default.
- W3128661750 cites W3033366604 @default.
- W3128661750 cites W3036066542 @default.
- W3128661750 cites W3036091651 @default.
- W3128661750 cites W3036114413 @default.
- W3128661750 doi "https://doi.org/10.1109/icces51560.2020.9334625" @default.
- W3128661750 hasPublicationYear "2020" @default.