Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128678894> ?p ?o ?g. }
- W3128678894 abstract "Image segmentation is a central topic in image processing and computer vision and a key issue in many applications, e.g., in medical imaging, microscopy, document analysis and remote sensing. According to the human perception, image segmentation is the process of dividing an image into non-overlapping regions. These regions, which may correspond, e.g., to different objects, are fundamental for the correct interpretation and classification of the scene represented by the image. The division into regions is not unique, but it depends on the application, i.e., it must be driven by the final goal of the segmentation and hence by the most significant features with respect to that goal. Image segmentation can be regarded as an ill-posed problem. A classical approach to deal with ill posedness consists in the use of regularization, which allows us to incorporate in the model a-priori information about the solution. In this work we provide a brief overview of regularized mathematical models for image segmentation, considering edge-based and region-based variational models, as well as statistical and machine-learning approaches. We also sketch numerical methods that are applied in computing solutions of those models. In our opinion, a unifying view of regularized mathematical models and related computational tools for segmentation can help the readers identify the most appropriate methods for solving their specific segmentation problems. It can also provide a basis for designing new methods combining existing ones." @default.
- W3128678894 created "2021-02-15" @default.
- W3128678894 creator A5038576832 @default.
- W3128678894 creator A5044144663 @default.
- W3128678894 creator A5060944643 @default.
- W3128678894 date "2021-02-10" @default.
- W3128678894 modified "2023-09-27" @default.
- W3128678894 title "A View of Regularized Approaches for Image Segmentation." @default.
- W3128678894 cites W1452724831 @default.
- W3128678894 cites W1498009869 @default.
- W3128678894 cites W1532628279 @default.
- W3128678894 cites W1566193143 @default.
- W3128678894 cites W1606936601 @default.
- W3128678894 cites W1686810756 @default.
- W3128678894 cites W177045304 @default.
- W3128678894 cites W1896560479 @default.
- W3128678894 cites W1903029394 @default.
- W3128678894 cites W1972544340 @default.
- W3128678894 cites W1972885239 @default.
- W3128678894 cites W1973734200 @default.
- W3128678894 cites W1980055624 @default.
- W3128678894 cites W1991113069 @default.
- W3128678894 cites W2015131139 @default.
- W3128678894 cites W2017745767 @default.
- W3128678894 cites W2018304880 @default.
- W3128678894 cites W2019062120 @default.
- W3128678894 cites W2020999234 @default.
- W3128678894 cites W2022735534 @default.
- W3128678894 cites W2028956118 @default.
- W3128678894 cites W2038495454 @default.
- W3128678894 cites W2040167422 @default.
- W3128678894 cites W2040870580 @default.
- W3128678894 cites W2048511268 @default.
- W3128678894 cites W2049633694 @default.
- W3128678894 cites W2053050503 @default.
- W3128678894 cites W2061253660 @default.
- W3128678894 cites W2065164181 @default.
- W3128678894 cites W2073130516 @default.
- W3128678894 cites W2077472656 @default.
- W3128678894 cites W2083927153 @default.
- W3128678894 cites W2092663520 @default.
- W3128678894 cites W2096331886 @default.
- W3128678894 cites W2100470273 @default.
- W3128678894 cites W2100659887 @default.
- W3128678894 cites W2104095591 @default.
- W3128678894 cites W2109449402 @default.
- W3128678894 cites W2109863423 @default.
- W3128678894 cites W2110158442 @default.
- W3128678894 cites W2112796928 @default.
- W3128678894 cites W2114487471 @default.
- W3128678894 cites W2116040950 @default.
- W3128678894 cites W2132697886 @default.
- W3128678894 cites W2135095945 @default.
- W3128678894 cites W2138643603 @default.
- W3128678894 cites W2150134853 @default.
- W3128678894 cites W2151765755 @default.
- W3128678894 cites W2163605009 @default.
- W3128678894 cites W2164278908 @default.
- W3128678894 cites W2183389629 @default.
- W3128678894 cites W2198227614 @default.
- W3128678894 cites W2198918026 @default.
- W3128678894 cites W2247062920 @default.
- W3128678894 cites W2261948865 @default.
- W3128678894 cites W2299689158 @default.
- W3128678894 cites W2309836794 @default.
- W3128678894 cites W2411034702 @default.
- W3128678894 cites W2426516972 @default.
- W3128678894 cites W2533973874 @default.
- W3128678894 cites W2739680746 @default.
- W3128678894 cites W2782977076 @default.
- W3128678894 cites W2791181479 @default.
- W3128678894 cites W2798123701 @default.
- W3128678894 cites W2798766386 @default.
- W3128678894 cites W2804860796 @default.
- W3128678894 cites W2819713423 @default.
- W3128678894 cites W2913535645 @default.
- W3128678894 cites W2915254566 @default.
- W3128678894 cites W2943927267 @default.
- W3128678894 cites W2950179405 @default.
- W3128678894 cites W2965045533 @default.
- W3128678894 cites W2970190889 @default.
- W3128678894 cites W2982430624 @default.
- W3128678894 cites W2996322789 @default.
- W3128678894 cites W2998023265 @default.
- W3128678894 cites W2999607073 @default.
- W3128678894 cites W3001152983 @default.
- W3128678894 cites W3005816812 @default.
- W3128678894 cites W3014831329 @default.
- W3128678894 cites W3026631652 @default.
- W3128678894 cites W3029645440 @default.
- W3128678894 cites W3034879277 @default.
- W3128678894 cites W3040152568 @default.
- W3128678894 cites W3044899232 @default.
- W3128678894 cites W3048377477 @default.
- W3128678894 cites W3084334185 @default.
- W3128678894 cites W3092214930 @default.
- W3128678894 cites W343636949 @default.
- W3128678894 cites W9595669 @default.
- W3128678894 hasPublicationYear "2021" @default.
- W3128678894 type Work @default.