Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128693997> ?p ?o ?g. }
- W3128693997 abstract "Abstract Second‐order source separation (SOS) is a data analysis tool which can be used for revealing hidden structures in multivariate time series data or as a tool for dimension reduction. Such methods are nowadays increasingly important as more and more high‐dimensional multivariate time series data are measured in numerous fields of applied science. Dimension reduction is crucial, as modeling such high‐dimensional data with multivariate time series models is often impractical as the number of parameters describing dependencies between the component time series is usually too high. SOS methods have their roots in the signal processing literature, where they were first used to separate source signals from an observed signal mixture. The SOS model assumes that the observed time series (signals) is a linear mixture of latent time series (sources) with uncorrelated components. The methods make use of the second‐order statistics—hence the name “second‐order source separation.” In this review, we discuss the classical SOS methods and their extensions to more complex settings. An example illustrates how SOS can be performed. This article is categorized under: Statistical Models > Time Series Models Statistical and Graphical Methods of Data Analysis > Dimension Reduction Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data" @default.
- W3128693997 created "2021-02-15" @default.
- W3128693997 creator A5053200143 @default.
- W3128693997 creator A5072970885 @default.
- W3128693997 creator A5073367627 @default.
- W3128693997 creator A5089692184 @default.
- W3128693997 date "2021-02-07" @default.
- W3128693997 modified "2023-09-25" @default.
- W3128693997 title "A review of second‐order blind identification methods" @default.
- W3128693997 cites W1128326938 @default.
- W3128693997 cites W1489793438 @default.
- W3128693997 cites W1518472266 @default.
- W3128693997 cites W1524841735 @default.
- W3128693997 cites W1525387483 @default.
- W3128693997 cites W1573934564 @default.
- W3128693997 cites W1596301525 @default.
- W3128693997 cites W1596437172 @default.
- W3128693997 cites W1898037979 @default.
- W3128693997 cites W1910190001 @default.
- W3128693997 cites W1960920821 @default.
- W3128693997 cites W1967087016 @default.
- W3128693997 cites W1970723811 @default.
- W3128693997 cites W1972026932 @default.
- W3128693997 cites W1974403130 @default.
- W3128693997 cites W1981469185 @default.
- W3128693997 cites W1989581163 @default.
- W3128693997 cites W1991042426 @default.
- W3128693997 cites W1991135386 @default.
- W3128693997 cites W1999996900 @default.
- W3128693997 cites W2003499122 @default.
- W3128693997 cites W2018119392 @default.
- W3128693997 cites W2036273657 @default.
- W3128693997 cites W2038298527 @default.
- W3128693997 cites W2038601479 @default.
- W3128693997 cites W2044777402 @default.
- W3128693997 cites W2051641963 @default.
- W3128693997 cites W2058989825 @default.
- W3128693997 cites W2065506507 @default.
- W3128693997 cites W2065697425 @default.
- W3128693997 cites W2071708933 @default.
- W3128693997 cites W2074875934 @default.
- W3128693997 cites W2079036145 @default.
- W3128693997 cites W2079563517 @default.
- W3128693997 cites W2080042326 @default.
- W3128693997 cites W2085241944 @default.
- W3128693997 cites W2096710051 @default.
- W3128693997 cites W2108125949 @default.
- W3128693997 cites W2112220340 @default.
- W3128693997 cites W2122393449 @default.
- W3128693997 cites W2124757684 @default.
- W3128693997 cites W2128495200 @default.
- W3128693997 cites W2139457438 @default.
- W3128693997 cites W2140541289 @default.
- W3128693997 cites W2142638745 @default.
- W3128693997 cites W2145424836 @default.
- W3128693997 cites W2147943887 @default.
- W3128693997 cites W2149709356 @default.
- W3128693997 cites W2150972651 @default.
- W3128693997 cites W2151544690 @default.
- W3128693997 cites W2151836251 @default.
- W3128693997 cites W2158218920 @default.
- W3128693997 cites W2158456262 @default.
- W3128693997 cites W2159706540 @default.
- W3128693997 cites W2169064120 @default.
- W3128693997 cites W2252974855 @default.
- W3128693997 cites W2257909921 @default.
- W3128693997 cites W2262007469 @default.
- W3128693997 cites W2269587443 @default.
- W3128693997 cites W2338926067 @default.
- W3128693997 cites W2338952004 @default.
- W3128693997 cites W2413970548 @default.
- W3128693997 cites W2574774005 @default.
- W3128693997 cites W2588456301 @default.
- W3128693997 cites W2606485809 @default.
- W3128693997 cites W2606893218 @default.
- W3128693997 cites W2775104360 @default.
- W3128693997 cites W2780870313 @default.
- W3128693997 cites W2784078902 @default.
- W3128693997 cites W2800129804 @default.
- W3128693997 cites W2810290622 @default.
- W3128693997 cites W2889275191 @default.
- W3128693997 cites W2902232607 @default.
- W3128693997 cites W2945638852 @default.
- W3128693997 cites W2962787615 @default.
- W3128693997 cites W2978050636 @default.
- W3128693997 cites W3007583245 @default.
- W3128693997 cites W3015852307 @default.
- W3128693997 cites W3098183379 @default.
- W3128693997 cites W3104966664 @default.
- W3128693997 cites W3105022862 @default.
- W3128693997 cites W4205778870 @default.
- W3128693997 cites W4300989551 @default.
- W3128693997 cites W608794380 @default.
- W3128693997 cites W1999247192 @default.
- W3128693997 doi "https://doi.org/10.1002/wics.1550" @default.
- W3128693997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36249858" @default.
- W3128693997 hasPublicationYear "2021" @default.
- W3128693997 type Work @default.
- W3128693997 sameAs 3128693997 @default.
- W3128693997 citedByCount "11" @default.