Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128703085> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3128703085 abstract "Logistic regression is to establish a cost function in the face of a regression or classification problem, and then iteratively solve the optimal model parameters through optimization method, and then test and verify the quality of the model we solve. It is the primary approach to data classification in the field of big data and machine learning. The traditional logistic regression uses gradient descent method to solve the optimal parameter of the missing function. However, swarm intelligence algorithms, such as artificial fish swarm, can replace the traditional penalty function method to some extent to ensure the global convergence of the optimization algorithm. Artificial swarm intelligence algorithm can not only realize simple iterative optimization, but also has simple environmental adaptability and system self-regulation. In addition, guided random parallel global search makes the algorithm not easy to fall into the local optimal solution and get the global optimal solution. In this paper, the artificial fish swarm theory in the field of swarm intelligence is applied to solve the optimal parameter of the loss function and overcome the limitation of the gradient descent method to the loss function. In this paper, logistic regression and artificial fish swarm are adopted to deal with the actual data classification problem, and the validity of the algorithm is verified." @default.
- W3128703085 created "2021-02-15" @default.
- W3128703085 creator A5017586277 @default.
- W3128703085 creator A5024844345 @default.
- W3128703085 creator A5027035037 @default.
- W3128703085 creator A5038851564 @default.
- W3128703085 creator A5069714336 @default.
- W3128703085 creator A5080245201 @default.
- W3128703085 creator A5090205682 @default.
- W3128703085 date "2020-12-11" @default.
- W3128703085 modified "2023-10-16" @default.
- W3128703085 title "Logistic Regression Based on Artificial Fish Swarm Algorithm with T-Distribution Parameters" @default.
- W3128703085 cites W2134957040 @default.
- W3128703085 cites W2613089901 @default.
- W3128703085 cites W2766716207 @default.
- W3128703085 cites W2893996003 @default.
- W3128703085 cites W2907383994 @default.
- W3128703085 cites W2973052827 @default.
- W3128703085 doi "https://doi.org/10.1109/itaic49862.2020.9338804" @default.
- W3128703085 hasPublicationYear "2020" @default.
- W3128703085 type Work @default.
- W3128703085 sameAs 3128703085 @default.
- W3128703085 citedByCount "2" @default.
- W3128703085 crossrefType "proceedings-article" @default.
- W3128703085 hasAuthorship W3128703085A5017586277 @default.
- W3128703085 hasAuthorship W3128703085A5024844345 @default.
- W3128703085 hasAuthorship W3128703085A5027035037 @default.
- W3128703085 hasAuthorship W3128703085A5038851564 @default.
- W3128703085 hasAuthorship W3128703085A5069714336 @default.
- W3128703085 hasAuthorship W3128703085A5080245201 @default.
- W3128703085 hasAuthorship W3128703085A5090205682 @default.
- W3128703085 hasConcept C11413529 @default.
- W3128703085 hasConcept C119487961 @default.
- W3128703085 hasConcept C126255220 @default.
- W3128703085 hasConcept C153258448 @default.
- W3128703085 hasConcept C154945302 @default.
- W3128703085 hasConcept C162324750 @default.
- W3128703085 hasConcept C181335050 @default.
- W3128703085 hasConcept C2777303404 @default.
- W3128703085 hasConcept C33923547 @default.
- W3128703085 hasConcept C41008148 @default.
- W3128703085 hasConcept C50522688 @default.
- W3128703085 hasConcept C50644808 @default.
- W3128703085 hasConcept C85617194 @default.
- W3128703085 hasConceptScore W3128703085C11413529 @default.
- W3128703085 hasConceptScore W3128703085C119487961 @default.
- W3128703085 hasConceptScore W3128703085C126255220 @default.
- W3128703085 hasConceptScore W3128703085C153258448 @default.
- W3128703085 hasConceptScore W3128703085C154945302 @default.
- W3128703085 hasConceptScore W3128703085C162324750 @default.
- W3128703085 hasConceptScore W3128703085C181335050 @default.
- W3128703085 hasConceptScore W3128703085C2777303404 @default.
- W3128703085 hasConceptScore W3128703085C33923547 @default.
- W3128703085 hasConceptScore W3128703085C41008148 @default.
- W3128703085 hasConceptScore W3128703085C50522688 @default.
- W3128703085 hasConceptScore W3128703085C50644808 @default.
- W3128703085 hasConceptScore W3128703085C85617194 @default.
- W3128703085 hasLocation W31287030851 @default.
- W3128703085 hasOpenAccess W3128703085 @default.
- W3128703085 hasPrimaryLocation W31287030851 @default.
- W3128703085 hasRelatedWork W10108692 @default.
- W3128703085 hasRelatedWork W11023528 @default.
- W3128703085 hasRelatedWork W13198101 @default.
- W3128703085 hasRelatedWork W14688374 @default.
- W3128703085 hasRelatedWork W1594625 @default.
- W3128703085 hasRelatedWork W2700343 @default.
- W3128703085 hasRelatedWork W6285965 @default.
- W3128703085 hasRelatedWork W6820108 @default.
- W3128703085 hasRelatedWork W7456372 @default.
- W3128703085 hasRelatedWork W9188460 @default.
- W3128703085 isParatext "false" @default.
- W3128703085 isRetracted "false" @default.
- W3128703085 magId "3128703085" @default.
- W3128703085 workType "article" @default.