Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128741322> ?p ?o ?g. }
- W3128741322 abstract "Recent technological advancements and scientific discoveries have revolutionized the current era of genomics. Next-generation sequencing (NGS) technologies have led to tremendous reduction in the sequencing time and given rise to the production and collection of high volumes of genomic datasets. Predicting protein-coding genes from these copious genomic datasets is significant for the synthesis of protein and the understating of the regulatory function of the non-coding region. Methods have been developed to find protein-coding genes from the genome of organisms. Notwithstanding, the recent data explosion in genomics accentuates the need for more efficient algorithms for gene prediction. In this paper, we explore predictive analytics on genomic data. In particular, we present a scalable naive Bayes-based algorithm that is deployed over a cluster of Apache Spark framework for efficient prediction of genes in the genome of eukaryotic organisms. Evaluation results on the human genome chromosome GRCh37 and GRCh38 show that effectiveness of our algorithm for predictive analytics on genomic data with high-performance computing. high sensitivity, specificity and accuracy." @default.
- W3128741322 created "2021-02-15" @default.
- W3128741322 creator A5016113718 @default.
- W3128741322 creator A5074614182 @default.
- W3128741322 creator A5083957020 @default.
- W3128741322 date "2020-12-16" @default.
- W3128741322 modified "2023-09-29" @default.
- W3128741322 title "Predictive Analytics on Genomic Data with High-Performance Computing" @default.
- W3128741322 cites W110499809 @default.
- W3128741322 cites W134776625 @default.
- W3128741322 cites W1864675704 @default.
- W3128741322 cites W192889406 @default.
- W3128741322 cites W1978732934 @default.
- W3128741322 cites W1980213704 @default.
- W3128741322 cites W1987701162 @default.
- W3128741322 cites W200569373 @default.
- W3128741322 cites W2015616366 @default.
- W3128741322 cites W2027780439 @default.
- W3128741322 cites W2043801734 @default.
- W3128741322 cites W2077263906 @default.
- W3128741322 cites W2098071274 @default.
- W3128741322 cites W2098583636 @default.
- W3128741322 cites W2104696612 @default.
- W3128741322 cites W2115191221 @default.
- W3128741322 cites W2118058166 @default.
- W3128741322 cites W2149238618 @default.
- W3128741322 cites W2149337926 @default.
- W3128741322 cites W2149467186 @default.
- W3128741322 cites W2151308110 @default.
- W3128741322 cites W2153632714 @default.
- W3128741322 cites W2155814301 @default.
- W3128741322 cites W2159833474 @default.
- W3128741322 cites W2166187656 @default.
- W3128741322 cites W2168310604 @default.
- W3128741322 cites W2213701196 @default.
- W3128741322 cites W2470585343 @default.
- W3128741322 cites W2574232530 @default.
- W3128741322 cites W2574757126 @default.
- W3128741322 cites W2752595148 @default.
- W3128741322 cites W2755594639 @default.
- W3128741322 cites W2765094054 @default.
- W3128741322 cites W2794075952 @default.
- W3128741322 cites W2886760276 @default.
- W3128741322 cites W2886809372 @default.
- W3128741322 cites W2889111882 @default.
- W3128741322 cites W2921519987 @default.
- W3128741322 cites W2963905884 @default.
- W3128741322 cites W2986809465 @default.
- W3128741322 cites W2999679570 @default.
- W3128741322 cites W3004428372 @default.
- W3128741322 cites W3004954215 @default.
- W3128741322 cites W3005471101 @default.
- W3128741322 cites W3016609671 @default.
- W3128741322 doi "https://doi.org/10.1109/bibm49941.2020.9312982" @default.
- W3128741322 hasPublicationYear "2020" @default.
- W3128741322 type Work @default.
- W3128741322 sameAs 3128741322 @default.
- W3128741322 citedByCount "12" @default.
- W3128741322 countsByYear W31287413222021 @default.
- W3128741322 countsByYear W31287413222022 @default.
- W3128741322 countsByYear W31287413222023 @default.
- W3128741322 crossrefType "proceedings-article" @default.
- W3128741322 hasAuthorship W3128741322A5016113718 @default.
- W3128741322 hasAuthorship W3128741322A5074614182 @default.
- W3128741322 hasAuthorship W3128741322A5083957020 @default.
- W3128741322 hasConcept C104317684 @default.
- W3128741322 hasConcept C124101348 @default.
- W3128741322 hasConcept C141231307 @default.
- W3128741322 hasConcept C189206191 @default.
- W3128741322 hasConcept C197077220 @default.
- W3128741322 hasConcept C24103923 @default.
- W3128741322 hasConcept C39238701 @default.
- W3128741322 hasConcept C41008148 @default.
- W3128741322 hasConcept C54355233 @default.
- W3128741322 hasConcept C70721500 @default.
- W3128741322 hasConcept C75684735 @default.
- W3128741322 hasConcept C86803240 @default.
- W3128741322 hasConceptScore W3128741322C104317684 @default.
- W3128741322 hasConceptScore W3128741322C124101348 @default.
- W3128741322 hasConceptScore W3128741322C141231307 @default.
- W3128741322 hasConceptScore W3128741322C189206191 @default.
- W3128741322 hasConceptScore W3128741322C197077220 @default.
- W3128741322 hasConceptScore W3128741322C24103923 @default.
- W3128741322 hasConceptScore W3128741322C39238701 @default.
- W3128741322 hasConceptScore W3128741322C41008148 @default.
- W3128741322 hasConceptScore W3128741322C54355233 @default.
- W3128741322 hasConceptScore W3128741322C70721500 @default.
- W3128741322 hasConceptScore W3128741322C75684735 @default.
- W3128741322 hasConceptScore W3128741322C86803240 @default.
- W3128741322 hasFunder F4320320125 @default.
- W3128741322 hasFunder F4320334593 @default.
- W3128741322 hasLocation W31287413221 @default.
- W3128741322 hasOpenAccess W3128741322 @default.
- W3128741322 hasPrimaryLocation W31287413221 @default.
- W3128741322 hasRelatedWork W2052370551 @default.
- W3128741322 hasRelatedWork W2515921780 @default.
- W3128741322 hasRelatedWork W2550975521 @default.
- W3128741322 hasRelatedWork W2563093951 @default.
- W3128741322 hasRelatedWork W2564406132 @default.
- W3128741322 hasRelatedWork W2773202148 @default.