Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128753597> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3128753597 abstract "Bio-inspired (and meta-heuristic) algorithms are successfully employed in different domains and the research is going on to accommodate them in all the contexts where optimization is required. In software engineering, and especially Software Fault Prediction (SFP), they are investigated in various forms, e.g., to extract the most relevant features in a dataset or to select the most appropriate set of parameter values in the application of estimation techniques. In SFP, feature selection and optimization/tuning of estimation technique's parameters are an active research area, where recently various bio-inspired algorithms have been employed for both strategies. In this work, we present a Systematic Literature Review (SLR) about the use of bio-inspired algorithms for feature selection and parameter optimization aiming at increasing fault prediction accuracy of the models built with various estimation techniques. To the best of our knowledge, there is no SLR in SFP which covers the use of bioinspired algorithms, both for feature selection and parameter optimization. Since, the use of bio-inspired algorithms in the area of SFP started to be investigated in the late 2000, we have considered studies published between 2007 and 2019. As result, we have selected about 19 studies related to parameter optimization and 15 dealing with feature selection (in total 34 studies), extracted from five well-known digital libraries (ACM digital library, IEEE explore, Springer, ScienceDirect, and Scopus). Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are the widely used bio-inspired algorithms, both for parameter optimization and feature selection. Among them, GA is the better performed algorithm when evaluating its performance against the baseline (i.e., estimation techniques without any algorithm for feature selection or parameter optimization and trained with their default values). The SLR results also suggests that bio-inspired algorithms seem to provide more accurate predictions for feature selection than for parameter optimization." @default.
- W3128753597 created "2021-02-15" @default.
- W3128753597 creator A5012888719 @default.
- W3128753597 creator A5085966858 @default.
- W3128753597 date "2020-12-16" @default.
- W3128753597 modified "2023-10-16" @default.
- W3128753597 title "Bio-inspired Algorithms in Software Fault Prediction: A Systematic Literature Review" @default.
- W3128753597 cites W1975516699 @default.
- W3128753597 cites W2000251235 @default.
- W3128753597 cites W2026750231 @default.
- W3128753597 cites W2037664399 @default.
- W3128753597 cites W2037668591 @default.
- W3128753597 cites W2049831820 @default.
- W3128753597 cites W2170735442 @default.
- W3128753597 cites W2313957989 @default.
- W3128753597 cites W2367798545 @default.
- W3128753597 cites W2476367030 @default.
- W3128753597 cites W2773646099 @default.
- W3128753597 cites W2783056558 @default.
- W3128753597 cites W2792584166 @default.
- W3128753597 cites W2801325788 @default.
- W3128753597 cites W2807317544 @default.
- W3128753597 cites W2912086532 @default.
- W3128753597 cites W3143822685 @default.
- W3128753597 cites W991094393 @default.
- W3128753597 doi "https://doi.org/10.1109/icosst51357.2020.9332995" @default.
- W3128753597 hasPublicationYear "2020" @default.
- W3128753597 type Work @default.
- W3128753597 sameAs 3128753597 @default.
- W3128753597 citedByCount "3" @default.
- W3128753597 countsByYear W31287535972022 @default.
- W3128753597 countsByYear W31287535972023 @default.
- W3128753597 crossrefType "proceedings-article" @default.
- W3128753597 hasAuthorship W3128753597A5012888719 @default.
- W3128753597 hasAuthorship W3128753597A5085966858 @default.
- W3128753597 hasConcept C109718341 @default.
- W3128753597 hasConcept C11413529 @default.
- W3128753597 hasConcept C119857082 @default.
- W3128753597 hasConcept C124101348 @default.
- W3128753597 hasConcept C127313418 @default.
- W3128753597 hasConcept C138885662 @default.
- W3128753597 hasConcept C148483581 @default.
- W3128753597 hasConcept C154945302 @default.
- W3128753597 hasConcept C165205528 @default.
- W3128753597 hasConcept C173801870 @default.
- W3128753597 hasConcept C175551986 @default.
- W3128753597 hasConcept C177264268 @default.
- W3128753597 hasConcept C199360897 @default.
- W3128753597 hasConcept C2776401178 @default.
- W3128753597 hasConcept C2777904410 @default.
- W3128753597 hasConcept C41008148 @default.
- W3128753597 hasConcept C41895202 @default.
- W3128753597 hasConcept C4935549 @default.
- W3128753597 hasConcept C81917197 @default.
- W3128753597 hasConcept C85617194 @default.
- W3128753597 hasConcept C8880873 @default.
- W3128753597 hasConceptScore W3128753597C109718341 @default.
- W3128753597 hasConceptScore W3128753597C11413529 @default.
- W3128753597 hasConceptScore W3128753597C119857082 @default.
- W3128753597 hasConceptScore W3128753597C124101348 @default.
- W3128753597 hasConceptScore W3128753597C127313418 @default.
- W3128753597 hasConceptScore W3128753597C138885662 @default.
- W3128753597 hasConceptScore W3128753597C148483581 @default.
- W3128753597 hasConceptScore W3128753597C154945302 @default.
- W3128753597 hasConceptScore W3128753597C165205528 @default.
- W3128753597 hasConceptScore W3128753597C173801870 @default.
- W3128753597 hasConceptScore W3128753597C175551986 @default.
- W3128753597 hasConceptScore W3128753597C177264268 @default.
- W3128753597 hasConceptScore W3128753597C199360897 @default.
- W3128753597 hasConceptScore W3128753597C2776401178 @default.
- W3128753597 hasConceptScore W3128753597C2777904410 @default.
- W3128753597 hasConceptScore W3128753597C41008148 @default.
- W3128753597 hasConceptScore W3128753597C41895202 @default.
- W3128753597 hasConceptScore W3128753597C4935549 @default.
- W3128753597 hasConceptScore W3128753597C81917197 @default.
- W3128753597 hasConceptScore W3128753597C85617194 @default.
- W3128753597 hasConceptScore W3128753597C8880873 @default.
- W3128753597 hasLocation W31287535971 @default.
- W3128753597 hasOpenAccess W3128753597 @default.
- W3128753597 hasPrimaryLocation W31287535971 @default.
- W3128753597 hasRelatedWork W2317005887 @default.
- W3128753597 hasRelatedWork W2358030344 @default.
- W3128753597 hasRelatedWork W2380624391 @default.
- W3128753597 hasRelatedWork W2386920888 @default.
- W3128753597 hasRelatedWork W2392443515 @default.
- W3128753597 hasRelatedWork W2767251299 @default.
- W3128753597 hasRelatedWork W3082258531 @default.
- W3128753597 hasRelatedWork W4210474939 @default.
- W3128753597 hasRelatedWork W4225307033 @default.
- W3128753597 hasRelatedWork W4293226387 @default.
- W3128753597 isParatext "false" @default.
- W3128753597 isRetracted "false" @default.
- W3128753597 magId "3128753597" @default.
- W3128753597 workType "article" @default.