Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128776197> ?p ?o ?g. }
- W3128776197 endingPage "498" @default.
- W3128776197 startingPage "498" @default.
- W3128776197 abstract "Recently, a great many deep convolutional neural network (CNN)-based methods have been proposed for hyperspectral image (HSI) classification. Although the proposed CNN-based methods have the advantages of spatial feature extraction, they are difficult to handle the sequential data with and CNNs are not good at modeling the long-range dependencies. However, the spectra of HSI are a kind of sequential data, and HSI usually contains hundreds of bands. Therefore, it is difficult for CNNs to handle HSI processing well. On the other hand, the Transformer model, which is based on an attention mechanism, has proved its advantages in processing sequential data. To address the issue of capturing relationships of sequential spectra in HSI in a long distance, in this study, Transformer is investigated for HSI classification. Specifically, in this study, a new classification framework titled spatial-spectral Transformer (SST) is proposed for HSI classification. In the proposed SST, a well-designed CNN is used to extract the spatial features, and a modified Transformer (a Transformer with dense connection, i.e., DenseTransformer) is proposed to capture sequential spectra relationships, and multilayer perceptron is used to finish the final classification task. Furthermore, dynamic feature augmentation, which aims to alleviate the overfitting problem and therefore generalize the model well, is proposed and added to the SST (SST-FA). In addition, to address the issue of limited training samples in HSI classification, transfer learning is combined with SST, and another classification framework titled transferring-SST (T-SST) is proposed. At last, to mitigate the overfitting problem and improve the classification accuracy, label smoothing is introduced for the T-SST-based classification framework (T-SST-L). The proposed SST, SST-FA, T-SST, and T-SST-L are tested on three widely used hyperspectral datasets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, which shows that the concept of Transformer opens a new window for HSI classification." @default.
- W3128776197 created "2021-02-15" @default.
- W3128776197 creator A5024900991 @default.
- W3128776197 creator A5027034650 @default.
- W3128776197 creator A5039815946 @default.
- W3128776197 date "2021-01-30" @default.
- W3128776197 modified "2023-10-15" @default.
- W3128776197 title "Spatial-Spectral Transformer for Hyperspectral Image Classification" @default.
- W3128776197 cites W1521436688 @default.
- W3128776197 cites W1979286683 @default.
- W3128776197 cites W1988386267 @default.
- W3128776197 cites W2008847349 @default.
- W3128776197 cites W2010633042 @default.
- W3128776197 cites W2043665634 @default.
- W3128776197 cites W2087263574 @default.
- W3128776197 cites W2114819256 @default.
- W3128776197 cites W2136251662 @default.
- W3128776197 cites W2159070926 @default.
- W3128776197 cites W2167799103 @default.
- W3128776197 cites W2191483095 @default.
- W3128776197 cites W2345128667 @default.
- W3128776197 cites W2500751094 @default.
- W3128776197 cites W2548791488 @default.
- W3128776197 cites W2549835527 @default.
- W3128776197 cites W2572303978 @default.
- W3128776197 cites W2603422184 @default.
- W3128776197 cites W2764276316 @default.
- W3128776197 cites W2767651786 @default.
- W3128776197 cites W2768211636 @default.
- W3128776197 cites W2782517596 @default.
- W3128776197 cites W2782517840 @default.
- W3128776197 cites W2791006446 @default.
- W3128776197 cites W2811355488 @default.
- W3128776197 cites W2894165434 @default.
- W3128776197 cites W2898381489 @default.
- W3128776197 cites W2907100627 @default.
- W3128776197 cites W2911964244 @default.
- W3128776197 cites W2912371366 @default.
- W3128776197 cites W2921445432 @default.
- W3128776197 cites W2950266692 @default.
- W3128776197 cites W2954870938 @default.
- W3128776197 cites W2962770389 @default.
- W3128776197 cites W3101640299 @default.
- W3128776197 cites W3122774149 @default.
- W3128776197 cites W4240485910 @default.
- W3128776197 doi "https://doi.org/10.3390/rs13030498" @default.
- W3128776197 hasPublicationYear "2021" @default.
- W3128776197 type Work @default.
- W3128776197 sameAs 3128776197 @default.
- W3128776197 citedByCount "135" @default.
- W3128776197 countsByYear W31287761972021 @default.
- W3128776197 countsByYear W31287761972022 @default.
- W3128776197 countsByYear W31287761972023 @default.
- W3128776197 crossrefType "journal-article" @default.
- W3128776197 hasAuthorship W3128776197A5024900991 @default.
- W3128776197 hasAuthorship W3128776197A5027034650 @default.
- W3128776197 hasAuthorship W3128776197A5039815946 @default.
- W3128776197 hasBestOaLocation W31287761971 @default.
- W3128776197 hasConcept C121332964 @default.
- W3128776197 hasConcept C153180895 @default.
- W3128776197 hasConcept C154945302 @default.
- W3128776197 hasConcept C159078339 @default.
- W3128776197 hasConcept C165801399 @default.
- W3128776197 hasConcept C22019652 @default.
- W3128776197 hasConcept C41008148 @default.
- W3128776197 hasConcept C50644808 @default.
- W3128776197 hasConcept C52622490 @default.
- W3128776197 hasConcept C62520636 @default.
- W3128776197 hasConcept C66322947 @default.
- W3128776197 hasConcept C81363708 @default.
- W3128776197 hasConceptScore W3128776197C121332964 @default.
- W3128776197 hasConceptScore W3128776197C153180895 @default.
- W3128776197 hasConceptScore W3128776197C154945302 @default.
- W3128776197 hasConceptScore W3128776197C159078339 @default.
- W3128776197 hasConceptScore W3128776197C165801399 @default.
- W3128776197 hasConceptScore W3128776197C22019652 @default.
- W3128776197 hasConceptScore W3128776197C41008148 @default.
- W3128776197 hasConceptScore W3128776197C50644808 @default.
- W3128776197 hasConceptScore W3128776197C52622490 @default.
- W3128776197 hasConceptScore W3128776197C62520636 @default.
- W3128776197 hasConceptScore W3128776197C66322947 @default.
- W3128776197 hasConceptScore W3128776197C81363708 @default.
- W3128776197 hasFunder F4320321001 @default.
- W3128776197 hasIssue "3" @default.
- W3128776197 hasLocation W31287761971 @default.
- W3128776197 hasOpenAccess W3128776197 @default.
- W3128776197 hasPrimaryLocation W31287761971 @default.
- W3128776197 hasRelatedWork W1492295194 @default.
- W3128776197 hasRelatedWork W1574414179 @default.
- W3128776197 hasRelatedWork W2490526372 @default.
- W3128776197 hasRelatedWork W2922073769 @default.
- W3128776197 hasRelatedWork W4221142204 @default.
- W3128776197 hasRelatedWork W4281702477 @default.
- W3128776197 hasRelatedWork W4297676672 @default.
- W3128776197 hasRelatedWork W4362597605 @default.
- W3128776197 hasRelatedWork W4376166922 @default.
- W3128776197 hasRelatedWork W4378510483 @default.
- W3128776197 hasVolume "13" @default.