Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128793007> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3128793007 abstract "Abnormal growth in cells with the potential to diffuse to other parts of the human body could occur due to multiple reasons such as changes in DNA segments activity. Altering DNA methylation is known as an important factor in cancer development and altering DNA activity by avoiding some of the normal activities of DNA. Feature extraction is used to reduce the dimensionality in high dimensional datasets as well as to filter the most useful features in predicting gene expression for a cancer. A number of feature extraction methods have been used in literature for selecting the most useful features. In this study Semi-orthogonal Non-Negative Matrix Factorization (SONMF) and Non-negative Matrix Factorization (NMF) were studied and tested on four microarray cancer datasets for feature extraction and compared with FFT features, Symmetry of Methylation Density Features, and Principal Component Analysis (PCA). Five different classifiers, namely Naive Bayes, Support Vector Machine (SVM), K-nearest Neighbor (KNN), Random Forest and Neural Network were used to predict the gene expression of the four cancer microarray datasets. The experiments show that for colon cancer dataset, Semi-orthogonal NMF (SONMF) and Non-negative Matrix Factorization (NMF) performed the best compared with other feature extraction methods with Naive Bayes classifier. For Oral cancer dataset, the highest accuracy was observed with SONMF and Neural Network classifier. In Leukemia cancer, the highest accuracy of 100% was observed with NMF, SONMF and PCA with Neural Network and SVM classifiers. For prostate cancer dataset, SONMF with Naive Bayes classifier gave the highest accuracy. Overall, the results show that SONMF and NMF were more consistent compared with other features extraction methods and gave the best features for prediction accuracy of microarray cancer datasets." @default.
- W3128793007 created "2021-02-15" @default.
- W3128793007 creator A5000788667 @default.
- W3128793007 creator A5033484647 @default.
- W3128793007 creator A5035585945 @default.
- W3128793007 date "2020-12-16" @default.
- W3128793007 modified "2023-10-18" @default.
- W3128793007 title "Improving Prediction Accuracy of Microarray Cancer Data with Non-negative Matrix Factorization and Its Variant" @default.
- W3128793007 cites W1902027874 @default.
- W3128793007 cites W1976651876 @default.
- W3128793007 cites W2103392107 @default.
- W3128793007 cites W2109363337 @default.
- W3128793007 cites W2128728535 @default.
- W3128793007 cites W2145191876 @default.
- W3128793007 cites W2156640962 @default.
- W3128793007 cites W2166410045 @default.
- W3128793007 cites W2757384990 @default.
- W3128793007 cites W2787816121 @default.
- W3128793007 cites W2955055966 @default.
- W3128793007 doi "https://doi.org/10.1109/bibm49941.2020.9313346" @default.
- W3128793007 hasPublicationYear "2020" @default.
- W3128793007 type Work @default.
- W3128793007 sameAs 3128793007 @default.
- W3128793007 citedByCount "0" @default.
- W3128793007 crossrefType "proceedings-article" @default.
- W3128793007 hasAuthorship W3128793007A5000788667 @default.
- W3128793007 hasAuthorship W3128793007A5033484647 @default.
- W3128793007 hasAuthorship W3128793007A5035585945 @default.
- W3128793007 hasConcept C121332964 @default.
- W3128793007 hasConcept C12267149 @default.
- W3128793007 hasConcept C152671427 @default.
- W3128793007 hasConcept C153180895 @default.
- W3128793007 hasConcept C154945302 @default.
- W3128793007 hasConcept C158693339 @default.
- W3128793007 hasConcept C169258074 @default.
- W3128793007 hasConcept C27438332 @default.
- W3128793007 hasConcept C41008148 @default.
- W3128793007 hasConcept C42355184 @default.
- W3128793007 hasConcept C52001869 @default.
- W3128793007 hasConcept C52622490 @default.
- W3128793007 hasConcept C62520636 @default.
- W3128793007 hasConcept C95623464 @default.
- W3128793007 hasConceptScore W3128793007C121332964 @default.
- W3128793007 hasConceptScore W3128793007C12267149 @default.
- W3128793007 hasConceptScore W3128793007C152671427 @default.
- W3128793007 hasConceptScore W3128793007C153180895 @default.
- W3128793007 hasConceptScore W3128793007C154945302 @default.
- W3128793007 hasConceptScore W3128793007C158693339 @default.
- W3128793007 hasConceptScore W3128793007C169258074 @default.
- W3128793007 hasConceptScore W3128793007C27438332 @default.
- W3128793007 hasConceptScore W3128793007C41008148 @default.
- W3128793007 hasConceptScore W3128793007C42355184 @default.
- W3128793007 hasConceptScore W3128793007C52001869 @default.
- W3128793007 hasConceptScore W3128793007C52622490 @default.
- W3128793007 hasConceptScore W3128793007C62520636 @default.
- W3128793007 hasConceptScore W3128793007C95623464 @default.
- W3128793007 hasLocation W31287930071 @default.
- W3128793007 hasOpenAccess W3128793007 @default.
- W3128793007 hasPrimaryLocation W31287930071 @default.
- W3128793007 hasRelatedWork W1092481 @default.
- W3128793007 hasRelatedWork W15119441 @default.
- W3128793007 hasRelatedWork W1781265 @default.
- W3128793007 hasRelatedWork W2582698 @default.
- W3128793007 hasRelatedWork W2834797 @default.
- W3128793007 hasRelatedWork W4947539 @default.
- W3128793007 hasRelatedWork W6494939 @default.
- W3128793007 hasRelatedWork W8197146 @default.
- W3128793007 hasRelatedWork W9952751 @default.
- W3128793007 hasRelatedWork W5443255 @default.
- W3128793007 isParatext "false" @default.
- W3128793007 isRetracted "false" @default.
- W3128793007 magId "3128793007" @default.
- W3128793007 workType "article" @default.