Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128806918> ?p ?o ?g. }
- W3128806918 abstract "<p><b>Optical artificial neural networks (ONNs) — analog computing hardware tailored for machine learning — have significant potential for ultra-high computing speed and energy efficiency. We propose a new approach to architectures for ONNs based on integrated Kerr micro-comb sources that is programmable, highly scalable and capable of reaching ultra-high speeds. We experimentally demonstrate the building block of the ONN — a single neuron perceptron — by mapping synapses onto 49 wavelengths of a micro-comb to achieve a high single-unit throughput of 11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps. We test the perceptron on simple standard benchmark datasets — handwritten-digit recognition and cancer-cell detection — achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record small wavelength spacing (49GHz) for a coherent integrated microcomb source, which results in an unprecedented number of wavelengths for neuromorphic optics. Finally, we propose an approach to scaling the perceptron to a deep learning network using the same single micro-comb device and standard off-the-shelf telecommunications technology, for high-throughput operation involving full matrix multiplication for applications such as real-time massive data processing for unmanned vehicle and aircraft tracking. </b></p>" @default.
- W3128806918 created "2021-02-15" @default.
- W3128806918 creator A5001422930 @default.
- W3128806918 creator A5015051704 @default.
- W3128806918 creator A5015869988 @default.
- W3128806918 creator A5015900507 @default.
- W3128806918 creator A5036934463 @default.
- W3128806918 creator A5041919053 @default.
- W3128806918 creator A5048196888 @default.
- W3128806918 creator A5054280799 @default.
- W3128806918 creator A5076058089 @default.
- W3128806918 creator A5089477280 @default.
- W3128806918 creator A5090231085 @default.
- W3128806918 creator A5091314474 @default.
- W3128806918 date "2020-03-09" @default.
- W3128806918 modified "2023-09-23" @default.
- W3128806918 title "Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks" @default.
- W3128806918 cites W1579661048 @default.
- W3128806918 cites W1977664984 @default.
- W3128806918 cites W1989930332 @default.
- W3128806918 cites W2007357901 @default.
- W3128806918 cites W2008541503 @default.
- W3128806918 cites W2010526503 @default.
- W3128806918 cites W2024865338 @default.
- W3128806918 cites W2040371569 @default.
- W3128806918 cites W2040870580 @default.
- W3128806918 cites W2041954589 @default.
- W3128806918 cites W2051270432 @default.
- W3128806918 cites W2081260298 @default.
- W3128806918 cites W2090125354 @default.
- W3128806918 cites W2145339207 @default.
- W3128806918 cites W2156857373 @default.
- W3128806918 cites W2247926630 @default.
- W3128806918 cites W2314470091 @default.
- W3128806918 cites W2528996360 @default.
- W3128806918 cites W2530887700 @default.
- W3128806918 cites W2587524409 @default.
- W3128806918 cites W2752849906 @default.
- W3128806918 cites W2760400020 @default.
- W3128806918 cites W2763363916 @default.
- W3128806918 cites W2765087426 @default.
- W3128806918 cites W2766447205 @default.
- W3128806918 cites W2792497689 @default.
- W3128806918 cites W2797680338 @default.
- W3128806918 cites W2798701005 @default.
- W3128806918 cites W2799284617 @default.
- W3128806918 cites W2802777054 @default.
- W3128806918 cites W2803706985 @default.
- W3128806918 cites W2885422785 @default.
- W3128806918 cites W2886839355 @default.
- W3128806918 cites W2892415914 @default.
- W3128806918 cites W2901714149 @default.
- W3128806918 cites W2911387168 @default.
- W3128806918 cites W2944119451 @default.
- W3128806918 cites W2979673467 @default.
- W3128806918 cites W2986967681 @default.
- W3128806918 cites W3002893622 @default.
- W3128806918 cites W3042364672 @default.
- W3128806918 cites W3099515649 @default.
- W3128806918 cites W3101539789 @default.
- W3128806918 cites W3102915914 @default.
- W3128806918 cites W3103000840 @default.
- W3128806918 cites W3103432472 @default.
- W3128806918 cites W3103448394 @default.
- W3128806918 cites W3103665993 @default.
- W3128806918 cites W3105099171 @default.
- W3128806918 cites W3123823243 @default.
- W3128806918 doi "https://doi.org/10.36227/techrxiv.11925225.v1" @default.
- W3128806918 hasPublicationYear "2020" @default.
- W3128806918 type Work @default.
- W3128806918 sameAs 3128806918 @default.
- W3128806918 citedByCount "0" @default.
- W3128806918 crossrefType "posted-content" @default.
- W3128806918 hasAuthorship W3128806918A5001422930 @default.
- W3128806918 hasAuthorship W3128806918A5015051704 @default.
- W3128806918 hasAuthorship W3128806918A5015869988 @default.
- W3128806918 hasAuthorship W3128806918A5015900507 @default.
- W3128806918 hasAuthorship W3128806918A5036934463 @default.
- W3128806918 hasAuthorship W3128806918A5041919053 @default.
- W3128806918 hasAuthorship W3128806918A5048196888 @default.
- W3128806918 hasAuthorship W3128806918A5054280799 @default.
- W3128806918 hasAuthorship W3128806918A5076058089 @default.
- W3128806918 hasAuthorship W3128806918A5089477280 @default.
- W3128806918 hasAuthorship W3128806918A5090231085 @default.
- W3128806918 hasAuthorship W3128806918A5091314474 @default.
- W3128806918 hasBestOaLocation W31288069181 @default.
- W3128806918 hasConcept C120665830 @default.
- W3128806918 hasConcept C121332964 @default.
- W3128806918 hasConcept C127413603 @default.
- W3128806918 hasConcept C13280743 @default.
- W3128806918 hasConcept C151927369 @default.
- W3128806918 hasConcept C154945302 @default.
- W3128806918 hasConcept C157764524 @default.
- W3128806918 hasConcept C17349429 @default.
- W3128806918 hasConcept C179717631 @default.
- W3128806918 hasConcept C185798385 @default.
- W3128806918 hasConcept C205649164 @default.
- W3128806918 hasConcept C20788544 @default.
- W3128806918 hasConcept C24326235 @default.
- W3128806918 hasConcept C41008148 @default.