Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128807777> ?p ?o ?g. }
- W3128807777 endingPage "110306" @default.
- W3128807777 startingPage "110306" @default.
- W3128807777 abstract "The primary radiation damage is an important part of the radiation process, which is of current interest as the rapid development of nuclear reactors and space instrumentation. In this study, using machine learning, we have demonstrated that atomic mass difference, Poisson’s ratio, mean atomic mass, and mass density have significant influence on the defect generation efficiency of a material during the primary damage step. Furthermore, we construct a new dataset by using these important features and obtain a well-trained neural network for predicting new materials with low efficiency of defect generation. In our study, the target of the dataset for training the predictor is constructed using the results from molecular dynamics simulations. This work provides the guiding information for designing materials with low efficiency of defect generation." @default.
- W3128807777 created "2021-02-15" @default.
- W3128807777 creator A5002013743 @default.
- W3128807777 creator A5036121968 @default.
- W3128807777 creator A5037666565 @default.
- W3128807777 creator A5076075426 @default.
- W3128807777 creator A5091803913 @default.
- W3128807777 date "2021-04-01" @default.
- W3128807777 modified "2023-10-18" @default.
- W3128807777 title "Identifying key parameters for predicting materials with low defect generation efficiency by machine learning" @default.
- W3128807777 cites W1498436455 @default.
- W3128807777 cites W1887004878 @default.
- W3128807777 cites W1968510480 @default.
- W3128807777 cites W1971666964 @default.
- W3128807777 cites W1983804286 @default.
- W3128807777 cites W1989493279 @default.
- W3128807777 cites W1989634028 @default.
- W3128807777 cites W1992985800 @default.
- W3128807777 cites W1995492501 @default.
- W3128807777 cites W2003444337 @default.
- W3128807777 cites W2005048776 @default.
- W3128807777 cites W2007850701 @default.
- W3128807777 cites W2012715851 @default.
- W3128807777 cites W2014763046 @default.
- W3128807777 cites W2014816155 @default.
- W3128807777 cites W2019465613 @default.
- W3128807777 cites W2026241405 @default.
- W3128807777 cites W2028624278 @default.
- W3128807777 cites W2032518123 @default.
- W3128807777 cites W2033577795 @default.
- W3128807777 cites W2034641850 @default.
- W3128807777 cites W2039959185 @default.
- W3128807777 cites W2043377673 @default.
- W3128807777 cites W2047968138 @default.
- W3128807777 cites W2048659078 @default.
- W3128807777 cites W2051850457 @default.
- W3128807777 cites W2054909304 @default.
- W3128807777 cites W2061329175 @default.
- W3128807777 cites W2061462482 @default.
- W3128807777 cites W2069737724 @default.
- W3128807777 cites W2074616700 @default.
- W3128807777 cites W2080856322 @default.
- W3128807777 cites W2085935636 @default.
- W3128807777 cites W2086340715 @default.
- W3128807777 cites W2091612954 @default.
- W3128807777 cites W2096103399 @default.
- W3128807777 cites W2098055048 @default.
- W3128807777 cites W2147415793 @default.
- W3128807777 cites W2165117813 @default.
- W3128807777 cites W2336095850 @default.
- W3128807777 cites W2413767465 @default.
- W3128807777 cites W2469218119 @default.
- W3128807777 cites W2498941985 @default.
- W3128807777 cites W2510674494 @default.
- W3128807777 cites W2555637955 @default.
- W3128807777 cites W2588121969 @default.
- W3128807777 cites W2760202681 @default.
- W3128807777 cites W2766856748 @default.
- W3128807777 cites W2770192582 @default.
- W3128807777 cites W2776192919 @default.
- W3128807777 cites W2776885897 @default.
- W3128807777 cites W2782488992 @default.
- W3128807777 cites W2800722845 @default.
- W3128807777 cites W2884430236 @default.
- W3128807777 cites W2896753520 @default.
- W3128807777 cites W2898583735 @default.
- W3128807777 cites W2899443725 @default.
- W3128807777 cites W2902603384 @default.
- W3128807777 cites W3100656426 @default.
- W3128807777 cites W3106310231 @default.
- W3128807777 doi "https://doi.org/10.1016/j.commatsci.2021.110306" @default.
- W3128807777 hasPublicationYear "2021" @default.
- W3128807777 type Work @default.
- W3128807777 sameAs 3128807777 @default.
- W3128807777 citedByCount "2" @default.
- W3128807777 countsByYear W31288077772022 @default.
- W3128807777 countsByYear W31288077772023 @default.
- W3128807777 crossrefType "journal-article" @default.
- W3128807777 hasAuthorship W3128807777A5002013743 @default.
- W3128807777 hasAuthorship W3128807777A5036121968 @default.
- W3128807777 hasAuthorship W3128807777A5037666565 @default.
- W3128807777 hasAuthorship W3128807777A5076075426 @default.
- W3128807777 hasAuthorship W3128807777A5091803913 @default.
- W3128807777 hasConcept C111919701 @default.
- W3128807777 hasConcept C119857082 @default.
- W3128807777 hasConcept C121332964 @default.
- W3128807777 hasConcept C153385146 @default.
- W3128807777 hasConcept C153428861 @default.
- W3128807777 hasConcept C154945302 @default.
- W3128807777 hasConcept C185544564 @default.
- W3128807777 hasConcept C186060115 @default.
- W3128807777 hasConcept C192562407 @default.
- W3128807777 hasConcept C199360897 @default.
- W3128807777 hasConcept C26517878 @default.
- W3128807777 hasConcept C2780801425 @default.
- W3128807777 hasConcept C38652104 @default.
- W3128807777 hasConcept C41008148 @default.
- W3128807777 hasConcept C50644808 @default.