Matches in SemOpenAlex for { <https://semopenalex.org/work/W3128821452> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3128821452 abstract "Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is the leading cause of sudden cardiac death (SCD) in young adults. Despite the well-known risk factors and existing clinical practice guidelines, HCM patients are underdiagnosed and sub-optimally managed. Developing machine learning models on electronic health record (EHR) data can help in better diagnosis of HCM and thus improve hundreds of patient lives. Automated phenotyping using HCM billing codes has received limited attention in the literature with a small number of prior publications. In this paper, we propose a novel predictive model that helps physicians in making diagnostic decisions, by means of information learned from historical data of similar patients. We assembled a cohort of 11,562 patients with known or suspected HCM who have visited Mayo Clinic between the years 1995 to 2019. All existing billing codes of these patients were extracted from the EHR data warehouse. Target ground truth labeling for training the machine learning model was provided by confirmed HCM diagnosis using the gold standard imaging tests for HCM diagnosis echocardiography (echo), or cardiac magnetic resonance (CMR) imaging. As the result, patients were labeled into three categories of yes definite HCM, no HCM phenotype, and possible HCM after a manual review of medical records and imaging tests. In this study, a random forest was adopted to investigate the predictive performance of billing codes for the identification of HCM patients due to its practical application and expected accuracy in a wide range of use cases. Our model performed well in finding patients with yes definite, possible and no HCM with an accuracy of 71%, weighted recall of 70%, the precision of 75%, and weighted F1 score of 72%. Furthermore, we provided visualizations based on multidimensional scaling and the principal component analysis to provide insights for clinicians' interpretation. This model can be used for the identification of HCM patients using their EHR data, and help clinicians in their diagnosis decision making." @default.
- W3128821452 created "2021-02-15" @default.
- W3128821452 creator A5002606430 @default.
- W3128821452 creator A5032010764 @default.
- W3128821452 creator A5033757760 @default.
- W3128821452 creator A5040687793 @default.
- W3128821452 creator A5058506527 @default.
- W3128821452 creator A5067384989 @default.
- W3128821452 date "2020-12-16" @default.
- W3128821452 modified "2023-09-24" @default.
- W3128821452 title "Explanatory Analysis of a Machine Learning Model to Identify Hypertrophic Cardiomyopathy Patients from EHR Using Diagnostic Codes" @default.
- W3128821452 cites W1666078664 @default.
- W3128821452 cites W2097618980 @default.
- W3128821452 cites W242743621 @default.
- W3128821452 cites W2469018802 @default.
- W3128821452 cites W2743283875 @default.
- W3128821452 cites W2784100015 @default.
- W3128821452 cites W2887210220 @default.
- W3128821452 cites W2915521690 @default.
- W3128821452 cites W2965792377 @default.
- W3128821452 doi "https://doi.org/10.1109/bibm49941.2020.9313231" @default.
- W3128821452 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8313105" @default.
- W3128821452 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34316386" @default.
- W3128821452 hasPublicationYear "2020" @default.
- W3128821452 type Work @default.
- W3128821452 sameAs 3128821452 @default.
- W3128821452 citedByCount "5" @default.
- W3128821452 countsByYear W31288214522021 @default.
- W3128821452 countsByYear W31288214522022 @default.
- W3128821452 countsByYear W31288214522023 @default.
- W3128821452 crossrefType "proceedings-article" @default.
- W3128821452 hasAuthorship W3128821452A5002606430 @default.
- W3128821452 hasAuthorship W3128821452A5032010764 @default.
- W3128821452 hasAuthorship W3128821452A5033757760 @default.
- W3128821452 hasAuthorship W3128821452A5040687793 @default.
- W3128821452 hasAuthorship W3128821452A5058506527 @default.
- W3128821452 hasAuthorship W3128821452A5067384989 @default.
- W3128821452 hasBestOaLocation W31288214522 @default.
- W3128821452 hasConcept C119857082 @default.
- W3128821452 hasConcept C126322002 @default.
- W3128821452 hasConcept C126838900 @default.
- W3128821452 hasConcept C143409427 @default.
- W3128821452 hasConcept C154945302 @default.
- W3128821452 hasConcept C169258074 @default.
- W3128821452 hasConcept C195910791 @default.
- W3128821452 hasConcept C2775935837 @default.
- W3128821452 hasConcept C2780074459 @default.
- W3128821452 hasConcept C2780185194 @default.
- W3128821452 hasConcept C2908647359 @default.
- W3128821452 hasConcept C2987145844 @default.
- W3128821452 hasConcept C41008148 @default.
- W3128821452 hasConcept C45827449 @default.
- W3128821452 hasConcept C71924100 @default.
- W3128821452 hasConcept C72563966 @default.
- W3128821452 hasConcept C99454951 @default.
- W3128821452 hasConceptScore W3128821452C119857082 @default.
- W3128821452 hasConceptScore W3128821452C126322002 @default.
- W3128821452 hasConceptScore W3128821452C126838900 @default.
- W3128821452 hasConceptScore W3128821452C143409427 @default.
- W3128821452 hasConceptScore W3128821452C154945302 @default.
- W3128821452 hasConceptScore W3128821452C169258074 @default.
- W3128821452 hasConceptScore W3128821452C195910791 @default.
- W3128821452 hasConceptScore W3128821452C2775935837 @default.
- W3128821452 hasConceptScore W3128821452C2780074459 @default.
- W3128821452 hasConceptScore W3128821452C2780185194 @default.
- W3128821452 hasConceptScore W3128821452C2908647359 @default.
- W3128821452 hasConceptScore W3128821452C2987145844 @default.
- W3128821452 hasConceptScore W3128821452C41008148 @default.
- W3128821452 hasConceptScore W3128821452C45827449 @default.
- W3128821452 hasConceptScore W3128821452C71924100 @default.
- W3128821452 hasConceptScore W3128821452C72563966 @default.
- W3128821452 hasConceptScore W3128821452C99454951 @default.
- W3128821452 hasFunder F4320332161 @default.
- W3128821452 hasLocation W31288214521 @default.
- W3128821452 hasLocation W31288214522 @default.
- W3128821452 hasLocation W31288214523 @default.
- W3128821452 hasOpenAccess W3128821452 @default.
- W3128821452 hasPrimaryLocation W31288214521 @default.
- W3128821452 hasRelatedWork W2292920786 @default.
- W3128821452 hasRelatedWork W2321319559 @default.
- W3128821452 hasRelatedWork W2630906460 @default.
- W3128821452 hasRelatedWork W3116896278 @default.
- W3128821452 hasRelatedWork W3151247252 @default.
- W3128821452 hasRelatedWork W4225360065 @default.
- W3128821452 hasRelatedWork W4282839226 @default.
- W3128821452 hasRelatedWork W4283016678 @default.
- W3128821452 hasRelatedWork W4286312232 @default.
- W3128821452 hasRelatedWork W2531517130 @default.
- W3128821452 isParatext "false" @default.
- W3128821452 isRetracted "false" @default.
- W3128821452 magId "3128821452" @default.
- W3128821452 workType "article" @default.